Two-dimensional photonic crystals for engineering atom-light interactions

被引:65
作者
Yu, Su-Peng [1 ]
Muniz, Juan A. [1 ]
Hung, Chen-Lung [2 ,3 ]
Kimble, H. J. [1 ]
机构
[1] CALTECH, Norman Bridge Lab Phys, Pasadena, CA 91125 USA
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Quantum Ctr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
nanophotonics; quantum optics; quantum many-body; QUANTUM ELECTRODYNAMICS; PROPAGATION; MOTION; STATES; SPIN;
D O I
10.1073/pnas.1822110116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a 2D photonic crystal system for interacting with cold cesium (Cs) atoms. The band structures of the 2D photonic crystals are predicted to produce unconventional atom-light interaction behaviors, including anisotropic emission, suppressed spontaneous decay, and photon-mediated atom-atom interactions controlled by the position of the atomic array relative to the photonic crystal. An optical conveyor technique is presented for continuously loading atoms into the desired trapping positions with optimal coupling to the photonic crystal. The device configuration also enables application of optical tweezers for controlled placement of atoms. Devices can be fabricated reliably from a 200-nm silicon nitride device layer using a lithography-based process, producing predicted optical properties in transmission and reflection measurements. These 2D photonic crystal devices can be readily deployed to experiments for many-body physics with neutral atoms and engineering of exotic quantum matter.
引用
收藏
页码:12743 / 12751
页数:9
相关论文
共 73 条
[1]   QUANTUM ELECTRODYNAMICS IN PRESENCE OF DIELECTRICS AND CONDUCTORS .4. GENERAL THEORY FOR SPONTANEOUS EMISSION IN FINITE GEOMETRIES [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1975, 12 (04) :1475-1497
[2]  
Alton DJ, 2011, NAT PHYS, V7, P159, DOI [10.1038/nphys1837, 10.1038/NPHYS1837]
[3]  
[Anonymous], COMS MULT
[4]   Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance" in Atomic Arrays [J].
Asenjo-Garcia, A. ;
Moreno-Cardoner, M. ;
Albrecht, A. ;
Kimble, H. J. ;
Chang, D. E. .
PHYSICAL REVIEW X, 2017, 7 (03)
[5]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[6]   Atom-wall interaction [J].
Bloch, D ;
Ducloy, M .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 50, 2005, 50 :91-154
[7]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[8]   Dispersion forces in macroscopic quantum electrodynamics [J].
Buhmann, Stefan Yoshi ;
Welsch, Dirk-Gunnar .
PROGRESS IN QUANTUM ELECTRONICS, 2007, 31 (02) :51-130
[9]   Clocked atom delivery to a photonic crystal waveguide [J].
Burgers, A. P. ;
Peng, L. S. ;
Muniz, J. A. ;
McClung, A. C. ;
Martin, M. J. ;
Kimble, H. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (02) :456-465
[10]   Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons [J].
Chang, D. E. ;
Douglas, J. S. ;
Gonzalez-Tudela, A. ;
Hung, C. -L. ;
Kimble, H. J. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)