Rigorous Model Reduction for a Damped-Forced Nonlinear Beam Model: An Infinite-Dimensional Analysis

被引:16
作者
Kogelbauer, Florian [1 ]
Haller, George [1 ]
机构
[1] ETH, Inst Mech Syst, Leonhardstr 21, CH-8092 Zurich, Switzerland
关键词
Model reduction; Nonlinear vibrations; Beam equations; Spectral submanifolds; Invariant manifolds;
D O I
10.1007/s00332-018-9443-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use invariant manifold results on Banach spaces to conclude the existence of spectral submanifolds (SSMs) in a class of nonlinear, externally forced beam oscillations. SSMs are the smoothest nonlinear extensions of spectral subspaces of the linearized beam equation. Reduction in the governing PDE to SSMs provides an explicit low-dimensional model which captures the correct asymptotics of the full, infinite-dimensional dynamics. Our approach is general enough to admit extensions to other types of continuum vibrations. The model-reduction procedure we employ also gives guidelines for a mathematically self-consistent modeling of damping in PDEs describing structural vibrations.
引用
收藏
页码:1109 / 1150
页数:42
相关论文
共 29 条
  • [1] [Anonymous], 1999, Grad. Texts in Math., DOI DOI 10.1007/978-1-4612-0541-8
  • [2] [Anonymous], 1996, TURBULENCE COHERENT
  • [3] [Anonymous], 2006, A short course on operator semigroups
  • [4] [Anonymous], 2003, PURE APPL MATH AMSTE
  • [5] Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
    Avramov, Konstantin V.
    Mikhlin, Yuri V.
    [J]. APPLIED MECHANICS REVIEWS, 2013, 65 (02)
  • [6] ON DAMPING MECHANISMS IN BEAMS
    BANKS, HT
    INMAN, DJ
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1991, 58 (03): : 716 - 723
  • [7] The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces
    Cabré, X
    Fontich, E
    De la Llave, R
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) : 283 - 328
  • [8] Cazenave T, 1998, OXFORD LECT SERIES M
  • [9] A spectral characterization of nonlinear normal modes
    Cirillo, G. I.
    Mauroy, A.
    Renson, L.
    Kerschen, G.
    Sepulchre, R.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 284 - 301
  • [10] Cirillo G.I., 2015, P ASME 2015 INT DES