COMPARISON OF PORE FRACTAL CHARACTERISTICS BETWEEN MARINE AND CONTINENTAL SHALES

被引:45
|
作者
Liu, Jun [1 ,2 ,3 ]
Yao, Yanbin [1 ,2 ]
Liu, Dameng [1 ]
Cai, Yidong [1 ]
Cai, Jianchao [4 ]
机构
[1] China Univ Geosci Beijing, Sch Energy Resource, Beijing 100083, Peoples R China
[2] China Univ Geosci, Natl Engn Res Ctr CBM Dev & Utilizat, Coal Reservoir Lab, Beijing 100083, Peoples R China
[3] Beijing Key Lab Unconvent Nat Gas Geol Evaluat &, Beijing 100083, Peoples R China
[4] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Marine Shale; Continental Shale; Nitrogen Gas Adsorption-Desorption; Fractal Dimension; Methane Adsorption; NORTHEASTERN BRITISH-COLUMBIA; SILURIAN LONGMAXI SHALES; SICHUAN BASIN; GAS-ADSORPTION; GEOLOGICAL CONTROLS; SURFACE-AREA; CHINA; SYSTEMS; RESERVOIRS; MARCELLUS;
D O I
10.1142/S0218348X18400169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel-Halsey-Hill (FHH) model with N-2 adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N-2 adsorption-desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions (D-1 and D-2) were obtained at P/P-o of 0-0.5 and 0.5-1. The dimension D-2 is commonly greater than D1, suggesting that larger pores (diameter >similar to 4 nm) have more complex structures than small pores (diameter <similar to 4 nm). The fractal dimensions (both D-1 and D-2) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension D-1 is correlative to the TOC content and permeability of marine shale at a similar degree with dimension D-2, while the dimension D-1 is more sensitive to those of continental shale than dimension D-2. Compared with dimension D-2, for two shales, dimension D-1 is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China
    Yang, Feng
    Ning, Zhengfu
    Liu, Huiqing
    FUEL, 2014, 115 : 378 - 384
  • [22] Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales
    Wang, Yang
    Zhu, Yanming
    Liu, Shimin
    Zhang, Rui
    FUEL, 2016, 181 : 227 - 237
  • [23] Pore Structure and Heterogeneity Characteristics of Coal-Bearing Marine-Continental Transitional Shales from the Longtan Formation in the South Sichuan Basin, China
    Zhang, Jizhen
    Lin, Wei
    Li, Mingtao
    Wang, Jianguo
    Xiao, Xiao
    Chen, Yuchuan
    MINERALS, 2024, 14 (06)
  • [24] Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the lower Permian Shanxi Shale in the southeastern Ordos Basin, China
    Yang, Chao
    Zhang, Jinchuan
    Wang, Xiangzeng
    Tang, Xuan
    Chen, Yongchang
    Jiang, Lulu
    Gong, Xue
    MARINE AND PETROLEUM GEOLOGY, 2017, 88 : 54 - 68
  • [25] A Study on the Pore Structure and NMR Fractal Characteristics of Continental Shale in the Funing Formation of the Gaoyou Sag, Subei Basin
    Wang, Zipeng
    Zhu, Yue
    Jiang, Zhenxue
    Gong, Houjian
    Yang, Yu
    Wang, Bo
    Wang, Xin
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [26] Investigations of methane adsorption characteristics on marine-continental transitional shales and gas storage capacity models considering pore evolution
    Lu, Chen-Gang
    Xiao, Xian-Ming
    Xue, Zhen-Qian
    Chen, Zhang-Xin
    Dong, Yin-Tao
    Feng, Yue
    Li, Gang
    PETROLEUM SCIENCE, 2024, 21 (04) : 2273 - 2286
  • [27] Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China
    Bu, Honglin
    Ju, Yiwen
    Tan, Jingqiang
    Wang, Guochang
    Li, Xiaoshi
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 24 : 166 - 177
  • [28] Pore Structure Characteristics of Marine-Continental Transitional Shale: A Case Study in the Qinshui Basin, China
    Xi, Zhaodong
    Tang, Shuheng
    Zhang, Songhang
    Sun, Ke
    ENERGY & FUELS, 2017, 31 (08) : 7854 - 7866
  • [29] Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China
    Yang, Chao
    Zhang, Jinchuan
    Tang, Xuan
    Ding, Jianghui
    Zhao, Qianru
    Dang, Wei
    Chen, Haoyu
    Su, Yang
    Li, Bowen
    Lu, Dengfang
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2017, 171 : 76 - 92
  • [30] Study on pore structure characteristics of marine and continental shale in China
    Li, Zhiqing
    Oyediran, Ibrahim Adewuyi
    Huang, Runqiu
    Hu, Feng
    Du, Tingting
    Hu, Ruilin
    Li, Xiao
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 33 : 143 - 152