Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

被引:20
作者
Afshar-Mohajer, M. [1 ]
Yaghoubi, A. [2 ]
Ramesh, S. [1 ]
Bushroa, A. R. [1 ]
Chin, K. M. C. [1 ]
Tin, C. C. [1 ]
Chiu, W. S. [3 ]
机构
[1] Univ Malaya, Fac Engn, Dept Mech Engn, Ctr Adv Mfg & Mat Proc, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Ctr High Impact Res, Kuala Lumpur 50603, Malaysia
[3] Univ Malaya, Dept Phys, Low Dimens Mat Res Ctr, Kuala Lumpur 50603, Malaysia
关键词
Ceramic-metal interface; Bioactive coating; Forsterite; Magnesium oxide; Ion exchange decomposition; Diffusion; MICRO-ARC OXIDATION; HYDROXYAPATITE COATINGS; MECHANICAL-PROPERTIES; BIOMEDICAL APPLICATIONS; CRYSTAL-CHEMISTRY; LATTICE-DYNAMICS; FORSTERITE; OLIVINE; ALLOY; MICROSTRUCTURE;
D O I
10.1016/j.apsusc.2014.04.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium silicates (MgxSiOy) and in particular forsterite (Mg2SiO4) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 degrees C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti5Si3 layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 54 条
  • [1] Titanium substitution mechanisms in forsterite
    Berry, Andrew J.
    Walker, Andrew M.
    Hermann, Jorg
    O'Neill, Hugh St. C.
    Foran, Garry J.
    Gale, Julian D.
    [J]. CHEMICAL GEOLOGY, 2007, 242 (1-2) : 176 - 186
  • [2] BLOEBAUM RD, 1993, J ARTHROPLASTY, V8, P195, DOI 10.1016/S0883-5403(09)80013-2
  • [3] Electrophoretic deposition of biomaterials
    Boccaccini, A. R.
    Keim, S.
    Ma, R.
    Li, Y.
    Zhitomirsky, I.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 : S581 - S613
  • [4] ADHESIVELY BONDED HYDROXYAPATITE COATING
    BOULTON, LM
    GREGSON, PJ
    TUKE, M
    BALDWIN, T
    [J]. MATERIALS LETTERS, 1991, 12 (1-2) : 1 - 6
  • [5] BROWN GE, 1973, AM MINERAL, V58, P577
  • [6] CATTI M, 1982, J PHYS CHEM SOLIDS, V43, P1111, DOI 10.1016/0022-3697(82)90139-1
  • [7] Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors
    Chen, Yao
    Zhang, Xiong
    Yu, Peng
    Ma, Yanwei
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (09) : 3031 - 3035
  • [8] Atmospheric Plasma Sprayed Forsterite (Mg2SiO4) Coatings: An Investigation of the Processing-Microstructure-Performance Relationship
    Cojocaru, C. V.
    Lamarre, J. -M.
    Legoux, J. -G.
    Marple, B. R.
    [J]. JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2013, 22 (2-3) : 145 - 151
  • [9] Condit R.H., 2013, POINT DEFECTS MINERA, P106
  • [10] Diba M., 2014, CURR OPIN SOLID STAT