Regulation of mitochondrial complex III activity and assembly by TRAP1 in cancer cells

被引:13
作者
Matassa, Danilo Swann [1 ]
Criscuolo, Daniela [1 ]
Avolio, Rosario [1 ]
Agliarulo, Ilenia [2 ]
Sarnataro, Daniela [1 ]
Pacelli, Consiglia [3 ]
Scrima, Rosella [3 ]
Colamatteo, Alessandra [1 ]
Matarese, Giuseppe [1 ,4 ]
Capitanio, Nazzareno [3 ]
Landriscina, Matteo [5 ,6 ]
Esposito, Franca [1 ]
机构
[1] Univ Naples Federico II, Dept Mol Med & Med Biotechnol, I-80131 Naples, Italy
[2] Natl Res Council Italy CNR, Inst Biochem & Cellular Biol, I-80131 Naples, Italy
[3] Univ Foggia, Dept Clin & Expt Med, I-71122 Foggia, Italy
[4] Natl Res Council IEOS CNR, Inst Expt Endocrinol & Oncol Gaetano Salvatore, I-80131 Naples, Italy
[5] Univ Foggia, Dept Med & Surg Sci, I-71122 Foggia, Italy
[6] IRCCS, Referral Canc Ctr Basilicata, Lab Preclin & Translat Res, I-85028 Rionero In Vulture, Italy
关键词
TRAP1; Respiratory complex III; Ovarian cancer; Platinum resistance; CHAPERONE TRAP1; PLATINUM RESISTANCE; METABOLIC SWITCH; PROTEIN; PHOSPHORYLATION; HSP90; INTERACTS;
D O I
10.1186/s12935-022-02788-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Metabolic reprogramming is an important issue in tumor biology. A recently-identified actor in this regard is the molecular chaperone TRAP1, that is considered an oncogene in several cancers for its high expression but an oncosuppressor in others with predominant oxidative metabolism. TRAP1 is mainly localized in mitochondria, where it interacts with respiratory complexes, although alternative localizations have been described, particularly on the endoplasmic reticulum, where it interacts with the translational machinery with relevant roles in protein synthesis regulation. Results: Herein we show that, inside mitochondria, TRAP1 binds the complex III core component UQCRC2 and regulates complex III activity. This decreases respiration rate during basal conditions but allows sustained oxidative phosphorylation when glucose is limiting, a condition in which the direct TRAP1-UQCRC2 binding is disrupted, but not TRAP1-complex III binding. Interestingly, several complex III components and assembly factors show an inverse correlation with survival and response to platinum-based therapy in high grade serous ovarian cancers, where TRAP1 inversely correlates with stage and grade and directly correlates with survival. Accordingly, drug-resistant ovarian cancer cells show high levels of complex III components and high sensitivity to complex III inhibitory drug antimycin A. Conclusions: These results shed new light on the molecular mechanisms involved in TRAP1-dependent regulation of cancer cell metabolism and point out a potential novel target for metabolic therapy in ovarian cancer.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Analysis and functional relevance of the chaperone TRAP-1 interactome in the metabolic regulation and mitochondrial integrity of cancer cells [J].
Dharaskar, Shrikant Purushottam ;
Paithankar, Khanderao ;
Subbarao, Sreedhar Amere .
SCIENTIFIC REPORTS, 2023, 13 (01)
[42]   Calcium binding to a remote site can replace magnesium as cofactor for mitochondrial Hsp90 (TRAP1) ATPase activity [J].
Elnatan, Daniel ;
Agard, David A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (35) :13717-13724
[43]   Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction [J].
Chen, Fannie W. ;
Davies, Joanna P. ;
Calvo, Raul ;
Chaudhari, Jagruti ;
Dolios, Georgia ;
Taylor, Mercedes K. ;
Patnaik, Samarjit ;
Dehdashti, Jean ;
Mull, Rebecca ;
Dranchack, Patricia ;
Wang, Amy ;
Xu, Xin ;
Hughes, Emma ;
Southall, Noel ;
Ferrer, Marc ;
Wang, Rong ;
Marugan, Juan J. ;
Ioannou, Yiannis A. .
ISCIENCE, 2022, 25 (09)
[44]   Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1 [J].
Matassa, D. S. ;
Amoroso, M. R. ;
Agliarulo, I. ;
Maddalena, F. ;
Sisinni, L. ;
Paladino, S. ;
Romano, S. ;
Romano, M. F. ;
Sagar, V. ;
Loreni, F. ;
Landriscina, M. ;
Esposito, F. .
CELL DEATH & DISEASE, 2013, 4 :e851-e851
[45]   Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells [J].
Rasola, Andrea ;
Neckers, Len ;
Picard, Didier .
TRENDS IN CELL BIOLOGY, 2014, 24 (08) :455-463
[46]   Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells [J].
Guzzo, Giulia ;
Sciacovelli, Marco ;
Bernardi, Paolo ;
Rasola, Andrea .
ONCOTARGET, 2014, 5 (23) :11897-11908
[47]   Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells [J].
Park, Hye-Kyung ;
Hong, Jun-Hee ;
Oh, Young Taek ;
Kim, Sung Soo ;
Yin, Jinlong ;
Lee, An-Jung ;
Chae, Young Chan ;
Kim, Jong Heon ;
Park, Sung-Hye ;
Park, Chul-Kee ;
Park, Myung-Jin ;
Park, Jong Bae ;
Kang, Byoung Heon .
CANCER RESEARCH, 2019, 79 (07) :1369-1382
[48]   Heat shock proteins, cell survival and drug resistance: The mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy [J].
Landriscina, Matteo ;
Amoroso, Maria Rosaria ;
Piscazzi, Annamaria ;
Esposito, Franca .
GYNECOLOGIC ONCOLOGY, 2010, 117 (02) :177-182
[49]   Enhanced Expression of TRAP1 Protects Mitochondrial Function in Motor Neurons under Conditions of Oxidative Stress [J].
Clarke, Benjamin E. ;
Kalmar, Bernadett ;
Greensmith, Linda .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
[50]   The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis [J].
Abhinav Joshi ;
Li Dai ;
Yanxin Liu ;
Jungsoon Lee ;
Nastaran Mohammadi Ghahhari ;
Gregory Segala ;
Kristin Beebe ;
Lisa M. Jenkins ;
Gaelyn C. Lyons ;
Lilia Bernasconi ;
Francis T. F. Tsai ;
David A. Agard ;
Len Neckers ;
Didier Picard .
BMC Biology, 18