Regulation of mitochondrial complex III activity and assembly by TRAP1 in cancer cells

被引:11
作者
Matassa, Danilo Swann [1 ]
Criscuolo, Daniela [1 ]
Avolio, Rosario [1 ]
Agliarulo, Ilenia [2 ]
Sarnataro, Daniela [1 ]
Pacelli, Consiglia [3 ]
Scrima, Rosella [3 ]
Colamatteo, Alessandra [1 ]
Matarese, Giuseppe [1 ,4 ]
Capitanio, Nazzareno [3 ]
Landriscina, Matteo [5 ,6 ]
Esposito, Franca [1 ]
机构
[1] Univ Naples Federico II, Dept Mol Med & Med Biotechnol, I-80131 Naples, Italy
[2] Natl Res Council Italy CNR, Inst Biochem & Cellular Biol, I-80131 Naples, Italy
[3] Univ Foggia, Dept Clin & Expt Med, I-71122 Foggia, Italy
[4] Natl Res Council IEOS CNR, Inst Expt Endocrinol & Oncol Gaetano Salvatore, I-80131 Naples, Italy
[5] Univ Foggia, Dept Med & Surg Sci, I-71122 Foggia, Italy
[6] IRCCS, Referral Canc Ctr Basilicata, Lab Preclin & Translat Res, I-85028 Rionero In Vulture, Italy
关键词
TRAP1; Respiratory complex III; Ovarian cancer; Platinum resistance; CHAPERONE TRAP1; PLATINUM RESISTANCE; METABOLIC SWITCH; PROTEIN; PHOSPHORYLATION; HSP90; INTERACTS;
D O I
10.1186/s12935-022-02788-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Metabolic reprogramming is an important issue in tumor biology. A recently-identified actor in this regard is the molecular chaperone TRAP1, that is considered an oncogene in several cancers for its high expression but an oncosuppressor in others with predominant oxidative metabolism. TRAP1 is mainly localized in mitochondria, where it interacts with respiratory complexes, although alternative localizations have been described, particularly on the endoplasmic reticulum, where it interacts with the translational machinery with relevant roles in protein synthesis regulation. Results: Herein we show that, inside mitochondria, TRAP1 binds the complex III core component UQCRC2 and regulates complex III activity. This decreases respiration rate during basal conditions but allows sustained oxidative phosphorylation when glucose is limiting, a condition in which the direct TRAP1-UQCRC2 binding is disrupted, but not TRAP1-complex III binding. Interestingly, several complex III components and assembly factors show an inverse correlation with survival and response to platinum-based therapy in high grade serous ovarian cancers, where TRAP1 inversely correlates with stage and grade and directly correlates with survival. Accordingly, drug-resistant ovarian cancer cells show high levels of complex III components and high sensitivity to complex III inhibitory drug antimycin A. Conclusions: These results shed new light on the molecular mechanisms involved in TRAP1-dependent regulation of cancer cell metabolism and point out a potential novel target for metabolic therapy in ovarian cancer.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis
    Joshi, Abhinav
    Dai, Li
    Liu, Yanxin
    Lee, Jungsoon
    Ghahhari, Nastaran Mohammadi
    Segala, Gregory
    Beebe, Kristin
    Jenkins, Lisa M.
    Lyons, Gaelyn C.
    Bernasconi, Lilia
    Tsai, Francis T. F.
    Agard, David A.
    Neckers, Len
    Picard, Didier
    BMC BIOLOGY, 2020, 18 (01)
  • [22] The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation
    Cannino, Giuseppe
    Urbani, Andrea
    Gaspari, Marco
    Varano, Mariaconcetta
    Negro, Alessandro
    Filippi, Antonio
    Ciscato, Francesco
    Masgras, Ionica
    Gerle, Christoph
    Tibaldi, Elena
    Brunati, Anna Maria
    Colombo, Giorgio
    Lippe, Giovanna
    Bernardi, Paolo
    Rasola, Andrea
    CELL DEATH AND DIFFERENTIATION, 2022, 29 (12) : 2335 - 2346
  • [23] HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia
    Laquatra, Claudio
    Sanchez-Martin, Carlos
    Dinarello, Alberto
    Cannino, Giuseppe
    Minervini, Giovanni
    Moroni, Elisabetta
    Schiavone, Marco
    Tosatto, Silvio
    Argenton, Francesco
    Colombo, Giorgio
    Bernardi, Paolo
    Masgras, Ionica
    Rasola, Andrea
    CELL DEATH & DISEASE, 2021, 12 (05)
  • [24] The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease
    Dekker, Francoise A.
    Rudiger, Stefan G. D.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [25] The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors
    Joshi, Abhinav
    Ito, Takeshi
    Picard, Didier
    Neckers, Len
    BIOMOLECULES, 2022, 12 (07)
  • [26] The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting
    Masgras, Ionica
    Laquatra, Claudio
    Cannino, Giuseppe
    Serapian, Stefano A.
    Colombo, Giorgio
    Rasola, Andrea
    SEMINARS IN CANCER BIOLOGY, 2021, 76 : 45 - 53
  • [27] Knockdown of TRAP1 promotes cisplatin-induced apoptosis by promoting the ROS-dependent mitochondrial dysfunction in lung cancer cells
    Zhang, Xiaowei
    Dong, Yu
    Gao, Miao
    Hao, Minfeng
    Ren, Hui
    Guo, Ling
    Guo, Hua
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2021, 476 (02) : 1075 - 1082
  • [28] TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells
    Costantino, Eleonora
    Maddalena, Francesca
    Calise, Serena
    Piscazzi, Annamaria
    Tirino, Virginia
    Fersini, Alberto
    Ambrosi, Antonio
    Neri, Vincenzo
    Esposito, Franca
    Landriscina, Matteo
    CANCER LETTERS, 2009, 279 (01) : 39 - 46
  • [29] Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development
    Lisanti, Sofia
    Garlick, David S.
    Bryant, Kelly G.
    Tavecchio, Michele
    Mills, Gordon B.
    Lu, Yiling
    Kossenkov, Andrew V.
    Showe, Louise C.
    Languino, Lucia R.
    Altieri, Dario C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (48) : 25247 - 25254
  • [30] TRAP1 Inhibition Increases Glutamine Synthetase Activity in Glutamine Auxotrophic Non-small Cell Lung Cancer Cells
    Vo, Vu T. A.
    Choi, Jong-Whan
    Phan, Ai N. H.
    Hua, Tuyen N. M.
    Kim, Min-Kyu
    Kang, Byoung Heon
    Jung, Soon-Hee
    Yong, Suk-Joong
    Jeong, Yangsik
    ANTICANCER RESEARCH, 2018, 38 (04) : 2187 - 2193