Mapping the principal gradient onto the corpus callosum

被引:29
作者
Friedrich, Patrick [1 ,2 ]
Forkel, Stephanie J. [1 ,2 ,3 ]
de Schotten, Michel Thiebaut [1 ,2 ]
机构
[1] Sorbonne Univ, Brain Connect & Behav Lab, Paris, France
[2] Univ Bordeaux, IMN, CNRS, CEA,UMR 5293,Grp Imagerie Neurofonct, F-33000 Bordeaux, France
[3] Kings Coll London, Ctr Neuroimaging Sci, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England
基金
欧洲研究理事会;
关键词
INTERHEMISPHERIC FUNCTIONAL CONNECTIVITY; DEFAULT-MODE NETWORK; WHITE-MATTER; COMPLETE SECTION; CEREBRAL-CORTEX; BRAIN; NEGLECT; PARCELLATION; ASSOCIATION; MICROSTRUCTURE;
D O I
10.1016/j.neuroimage.2020.117317
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Thick Corpus Callosum in Children
    Schupper, Aviv
    Konen, Osnat
    Halevy, Ayelet
    Cohen, Rony
    Aharoni, Sharon
    Shuper, Avinoam
    JOURNAL OF CLINICAL NEUROLOGY, 2017, 13 (02): : 170 - 174
  • [22] Fetal Corpus Callosum Anomalies
    Lanzarone, Valeria
    Eixarch, Elisenda
    Borrell, Antoni
    JOURNAL OF ULTRASOUND IN MEDICINE, 2025, 44 (04) : 637 - 652
  • [23] Human ROBO1 regulates white matter structure in corpus callosum
    Darki, Fahimeh
    Massinen, Satu
    Salmela, Elina
    Matsson, Hans
    Peyrard-Janvid, Myriam
    Klingberg, Torkel
    Kere, Juha
    BRAIN STRUCTURE & FUNCTION, 2017, 222 (02) : 707 - 716
  • [24] Schizophrenia, neurodevelopment and corpus callosum
    G M Innocenti
    F Ansermet
    J Parnas
    Molecular Psychiatry, 2003, 8 : 261 - 274
  • [25] Schizophrenia, neurodevelopment and corpus callosum
    Innocenti, GM
    Ansermet, F
    Parnas, J
    MOLECULAR PSYCHIATRY, 2003, 8 (03) : 261 - 274
  • [26] The corpus callosum and mental illness
    Koviazina, M. S.
    VOPROSY PSIKHOLOGII, 2012, (01) : 141 - +
  • [27] Topography of the Chimpanzee Corpus Callosum
    Phillips, Kimberley A.
    Hopkins, William D.
    PLOS ONE, 2012, 7 (02):
  • [28] In vivo quantification of global connectivity in the human corpus callosum
    Jarbo, Kevin
    Verstynen, Timothy
    Schneider, Walter
    NEUROIMAGE, 2012, 59 (03) : 1988 - 1996
  • [29] Interleukin-6, Age, and Corpus Callosum Integrity
    Bettcher, Brianne M.
    Watson, Christa L.
    Walsh, Christine M.
    Lobach, Iryna V.
    Neuhaus, John
    Miller, Joshua W.
    Green, Ralph
    Patel, Nihar
    Dutt, Shubir
    Busovaca, Edgar
    Rosen, Howard J.
    Yaffe, Kristine
    Miller, Bruce L.
    Kramer, Joel H.
    PLOS ONE, 2014, 9 (09):
  • [30] Midsagittal structural differences and sexual dimorphism of the corpus callosum in obsessive-compulsive disorder
    Park, Hye Yoon
    Park, Jun Sung
    Kim, Sun Hyung
    Jang, Joon Hwan
    Jung, Wi Hoon
    Choi, Jung-Seok
    Kang, Do-Hyung
    Lee, Jong-Min
    Kwon, Jun Soo
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2011, 192 (03) : 147 - 153