Expanding the Applicability of High-Order Traub-Type Iterative Procedures

被引:0
|
作者
Amat, Sergio [1 ]
Argyros, Ioannis K. [2 ]
Busquier, Sonia [1 ]
Hilout, Said [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
High-order iterative procedures; Banach space; Semilocal convergence; Convergence domain; Majorizing sequence; CONVERGENCE;
D O I
10.1007/s10957-013-0440-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a collection of hybrid methods combining Newton's method with frozen derivatives and a family of high-order iterative schemes. We present semilocal convergence results for this collection on a Banach space setting. Using a more precise majorizing sequence and under the same or weaker convergence conditions than the ones in earlier studies, we expand the applicability of these iterative procedures.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 50 条
  • [21] A New High-Order and Efficient Family of Iterative Techniques for Nonlinear Models
    Behl, Ramandeep
    Martinez, Eulalia
    COMPLEXITY, 2020, 2020 (2020)
  • [22] Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators
    Amat, Sergio
    Busquier, Sonia
    Bermudez, Concepcion
    Alberto Magrenan, Angel
    ALGORITHMS, 2015, 8 (03) : 669 - 679
  • [23] A class of efficient high-order iterative methods with memory for nonlinear equations and their dynamics
    Howk, Cory L.
    Hueso, Jose L.
    Martinez, Eulalia
    Teruel, Carles
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7263 - 7282
  • [24] On a family of high-order iterative methods under gamma conditions with applications in denoising
    Amat, S.
    Hernandez, M. A.
    Romero, N.
    NUMERISCHE MATHEMATIK, 2014, 127 (02) : 201 - 221
  • [25] On a Family of High-Order Iterative Methods under Kantorovich Conditions and Some Applications
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Legaz, M. J.
    Plaza, S.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [26] A New High-Order Fractional Parallel Iterative Scheme for Solving Nonlinear Equations
    Shams, Mudassir
    Carpentieri, Bruno
    SYMMETRY-BASEL, 2024, 16 (11):
  • [27] On High-Order Iterative Schemes for the Matrix pth Root Avoiding the Use of Inverses
    Amat, Sergio
    Busquier, Sonia
    Hernandez-Veron, Miguel Angel
    Magrenan, Angel Alberto
    MATHEMATICS, 2021, 9 (02) : 1 - 8
  • [28] Using Majorizing Sequences for the Semi-local Convergence of a High-Order and Multipoint Iterative Method along with Stability Analysis
    Moccari, M.
    Lotfi, T.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [29] Multi-phase iterative learning control for high-order systems with arbitrary initial shifts
    Chen, Dongjie
    Xu, Ying
    Lu, Tiantian
    Li, Guojun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 216 : 231 - 245
  • [30] Optimized Design for NB-LDPC-Coded High-Order CPM: Power and Iterative Efficiencies
    Xue, Rui
    Wang, Tong
    Sun, Yanbo
    Tang, Huaiyu
    SYMMETRY-BASEL, 2020, 12 (08): : 1 - 17