Expanding the Applicability of High-Order Traub-Type Iterative Procedures

被引:0
|
作者
Amat, Sergio [1 ]
Argyros, Ioannis K. [2 ]
Busquier, Sonia [1 ]
Hilout, Said [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
High-order iterative procedures; Banach space; Semilocal convergence; Convergence domain; Majorizing sequence; CONVERGENCE;
D O I
10.1007/s10957-013-0440-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a collection of hybrid methods combining Newton's method with frozen derivatives and a family of high-order iterative schemes. We present semilocal convergence results for this collection on a Banach space setting. Using a more precise majorizing sequence and under the same or weaker convergence conditions than the ones in earlier studies, we expand the applicability of these iterative procedures.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 50 条
  • [11] On a new family of high-order iterative methods for the matrix pth root
    Amat, S.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) : 585 - 595
  • [12] On a Newton-type Family of High-Order Iterative Methods for some Matrix Functions
    Amat, S.
    Busquier, S.
    Magrenan, A. A.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [13] A New High-Order Alternating Group Iterative Scheme
    Shi, Y. M.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 465 - 468
  • [14] High-order Iterative Learning Control for Nonlinear Systems
    Li, Guojun
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 191 - 196
  • [15] Stable high-order iterative methods for solving nonlinear models
    Behl, Ramandeep
    Cordero, Alicia
    Motsa, Sandile S.
    Torregrosa, Juan R.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 303 : 70 - 88
  • [16] On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously
    Proinov, Petko D.
    Vasileva, Maria T.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [17] On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously
    Petko D Proinov
    Maria T Vasileva
    Journal of Inequalities and Applications, 2015
  • [18] High-order PDα-Type Iterative Learning Control and its Lebesgue-p Norm Convergence
    Li, Lei
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 578 - 583
  • [19] Some High-Order Iterative Methods for Nonlinear Models Originating from Real Life Problems
    Zaka Ullah, Malik
    Behl, Ramandeep
    Argyros, Ioannis K.
    MATHEMATICS, 2020, 8 (08)
  • [20] Iterative Learning Control for High-Order Systems With Arbitrary Initial Shifts
    Li, Guojun
    Zhang, Yu
    Wang, Kang
    Chen, Dongjie
    IEEE ACCESS, 2020, 8 : 5147 - 5159