Expanding the Applicability of High-Order Traub-Type Iterative Procedures

被引:0
|
作者
Amat, Sergio [1 ]
Argyros, Ioannis K. [2 ]
Busquier, Sonia [1 ]
Hilout, Said [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
High-order iterative procedures; Banach space; Semilocal convergence; Convergence domain; Majorizing sequence; CONVERGENCE;
D O I
10.1007/s10957-013-0440-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a collection of hybrid methods combining Newton's method with frozen derivatives and a family of high-order iterative schemes. We present semilocal convergence results for this collection on a Banach space setting. Using a more precise majorizing sequence and under the same or weaker convergence conditions than the ones in earlier studies, we expand the applicability of these iterative procedures.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 50 条
  • [1] Expanding the Applicability of High-Order Traub-Type Iterative Procedures
    Sergio Amat
    Ioannis K. Argyros
    Sonia Busquier
    Saïd Hilout
    Journal of Optimization Theory and Applications, 2014, 161 : 837 - 852
  • [2] Traub-type high order iterative procedures on Riemannian manifolds
    Amat S.
    Argyros I.K.
    Busquier S.
    Castro R.
    Hilout S.
    Plaza S.
    SeMA Journal, 2014, 63 (1) : 27 - 52
  • [3] Unified majorizing sequences for Traub-type multipoint iterative procedures
    Argyros, I. K.
    Gonzalez, D.
    NUMERICAL ALGORITHMS, 2013, 64 (03) : 549 - 565
  • [4] Unified majorizing sequences for Traub-type multipoint iterative procedures
    I. K. Argyros
    D. González
    Numerical Algorithms, 2013, 64 : 549 - 565
  • [5] A New Family of High-Order Ehrlich-Type Iterative Methods
    Proinov, Petko D.
    Vasileva, Maria T.
    MATHEMATICS, 2021, 9 (16)
  • [6] Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions
    Argyros, Ioannis K.
    George, Santhosh
    Erappa, Shobha M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1107 - 1113
  • [7] Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions
    Ioannis K. Argyros
    Santhosh George
    Shobha M. Erappa
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1107 - 1113
  • [8] Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence
    Behl, Ramandeep
    Argyros, Ioannis K.
    Mallawi, Fouad Othman
    MATHEMATICS, 2021, 9 (12)
  • [9] Approximation of inverse operators by a new family of high-order iterative methods
    Amat, S.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (05) : 629 - 644
  • [10] Generalized high-order iterative methods for solutions of nonlinear systems and their applications
    Thangkhenpau, G.
    Panday, Sunil
    Panday, Bhavna
    Stoenoiu, Carmen E.
    Jantschi, Lorentz
    AIMS MATHEMATICS, 2024, 9 (03): : 6161 - 6182