Urdu Nastaliq recognition using convolutional-recursive deep learning

被引:81
作者
Naz, Saeeda [1 ,2 ]
Umar, Arif I. [1 ]
Ahmad, Riaz [3 ]
Siddiqi, Imran [4 ]
Ahmed, Saad B. [5 ]
Razzak, Muhammad I. [5 ]
Shafait, Faisal [6 ]
机构
[1] Hazara Univ, Dept Informat Technol, Mansehra, Pakistan
[2] GGPGC 1, Higher Educ Dept, Abbottabad, Pakistan
[3] Univ Kaiserslautern, Kaiserslautern, Germany
[4] Bahria Univ, Islamabad, Pakistan
[5] King Saud Bin Abdulaziz Univ Hlth Sci, Riyadh, Saudi Arabia
[6] NUST, Islamabad, Pakistan
关键词
RNN; CNN; Urdu OCR; BLSTM; MDLSTM; CTC; FEATURES;
D O I
10.1016/j.neucom.2017.02.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in recognition of cursive scripts rely on implicit feature extraction methods that provide better results as compared to traditional hand-crafted feature extraction approaches. We present a hybrid approach based on explicit feature extraction by combining convolutional and recursive neural networks for feature learning and classification of cursive Urdu Nastaliq script. The first layer extracts low-level translational invariant features using Convolutional Neural Networks (CNN) which are then forwarded to Multi-dimensional Long Short-Term Memory Neural Networks (MDLSTM) for contextual feature extraction and learning. Experiments are carried out on the publicly available Urdu Printed Text-line Image (UPTI) dataset using the proposed hierarchical combination of CNN and MDLSTM. A recognition rate of up to 98.12% for 44-classes is achieved outperforming the state-of-the-art results on the UPTI dataset. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 50 条
[41]   A convolutional recursive modified Self Organizing Map for handwritten digits recognition [J].
Mohebi, Ehsan ;
Bagirov, Adil .
NEURAL NETWORKS, 2014, 60 :104-118
[42]   A Robust Approach for Gender Recognition using Deep Learning [J].
Arora, Shefali ;
Bhatia, M. P. S. .
2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
[43]   Isolated Sign Language Recognition Using Deep Learning [J].
Das, Sukanya ;
Yadav, Sumit Kumar ;
Samanta, Debasis .
COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 :343-356
[44]   Automatic License Plate Recognition Using Deep Learning [J].
Dhedhi, Bhavin ;
Datar, Prathamesh ;
Chiplunkar, Anuj ;
Jain, Kashish ;
Rangarajan, Amrith ;
Kundargi, Jayshree .
ADVANCES IN DATA SCIENCE, 2019, 941 :46-58
[45]   Multimodal Arabic emotion recognition using deep learning [J].
Al Roken, Noora ;
Barlas, Gerassimos .
SPEECH COMMUNICATION, 2023, 155
[46]   Parallelization Of Digit Recognition System Using Deep Convolutional Neural Network On CUDA [J].
Singh, Srishti ;
Paul, Amrit ;
Arun, M. .
2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS), 2017, :379-383
[47]   Action Recognition From Depth Maps Using Deep Convolutional Neural Networks [J].
Wang, Pichao ;
Li, Wanqing ;
Gao, Zhimin ;
Zhang, Jing ;
Tang, Chang ;
Ogunbona, Philip O. .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2016, 46 (04) :498-509
[48]   Indian Sign Language Gesture Recognition Using Deep Convolutional Neural Network [J].
Varsha, M. ;
Nair, Chitra S. .
2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, :193-197
[49]   Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition [J].
Singh, Pratibha ;
Verma, Ajay ;
Chaudhari, Narendra S. .
INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 2, INDIA 2016, 2016, 434 :551-561
[50]   FRACTAL AND CONVOLUTIONAL ANALYSIS FOR DEEP ATMOSPHERIC TURBULENCE USING MACHINE LEARNING [J].
Dudu, Nicholas ;
Rodriguez, Arturo ;
Moran, Gael ;
Terrazas, Jose ;
Adansi, Richard ;
Kotteda, V. M. Krushnarao ;
Harris, Christopher ;
Kumar, Vinod .
PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 1, 2021,