Urdu Nastaliq recognition using convolutional-recursive deep learning

被引:81
作者
Naz, Saeeda [1 ,2 ]
Umar, Arif I. [1 ]
Ahmad, Riaz [3 ]
Siddiqi, Imran [4 ]
Ahmed, Saad B. [5 ]
Razzak, Muhammad I. [5 ]
Shafait, Faisal [6 ]
机构
[1] Hazara Univ, Dept Informat Technol, Mansehra, Pakistan
[2] GGPGC 1, Higher Educ Dept, Abbottabad, Pakistan
[3] Univ Kaiserslautern, Kaiserslautern, Germany
[4] Bahria Univ, Islamabad, Pakistan
[5] King Saud Bin Abdulaziz Univ Hlth Sci, Riyadh, Saudi Arabia
[6] NUST, Islamabad, Pakistan
关键词
RNN; CNN; Urdu OCR; BLSTM; MDLSTM; CTC; FEATURES;
D O I
10.1016/j.neucom.2017.02.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in recognition of cursive scripts rely on implicit feature extraction methods that provide better results as compared to traditional hand-crafted feature extraction approaches. We present a hybrid approach based on explicit feature extraction by combining convolutional and recursive neural networks for feature learning and classification of cursive Urdu Nastaliq script. The first layer extracts low-level translational invariant features using Convolutional Neural Networks (CNN) which are then forwarded to Multi-dimensional Long Short-Term Memory Neural Networks (MDLSTM) for contextual feature extraction and learning. Experiments are carried out on the publicly available Urdu Printed Text-line Image (UPTI) dataset using the proposed hierarchical combination of CNN and MDLSTM. A recognition rate of up to 98.12% for 44-classes is achieved outperforming the state-of-the-art results on the UPTI dataset. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 50 条
[21]   Two Stream Deep Neural Network for Sequence-Based Urdu Ligature Recognition [J].
Arafat, Syed Yasser ;
Iqbal, Muhammad Javed .
IEEE ACCESS, 2019, 7 :159090-159099
[22]   Learning Deep Binaural Representations With Deep Convolutional Neural Networks for Spontaneous Speech Emotion Recognition [J].
Zhang, Shiqing ;
Chen, Aihua ;
Guo, Wenping ;
Cui, Yueli ;
Zhao, Xiaoming ;
Liu, Limei .
IEEE ACCESS, 2020, 8 :23496-23505
[23]   Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks [J].
Naz, Saeeda ;
Umar, Arif Iqbal ;
Ahmed, Riaz ;
Razzak, Muhammad Imran ;
Rashid, Sheikh Faisal ;
Shafait, Faisal .
SPRINGERPLUS, 2016, 5
[24]   Recognition of hard exudates using Deep Learning [J].
Auccahuasi, Wilver ;
Flores, Edward ;
Sernaque, Fernando ;
Cueva, Juanita ;
Diaz, Monica ;
Ore, Elizabeth .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 :2343-2353
[25]   Traffic sign recognition using deep learning [J].
Patel V. ;
Mehta J. ;
Iyer S. ;
Sharma A.K. .
International Journal of Vehicle Autonomous Systems, 2023, 16 (2-4) :97-107
[26]   Deepfake Audio Detection for Urdu Language Using Deep Neural Networks [J].
Ahmad, Omair ;
Khan, Muhammad Sohail ;
Jan, Salman ;
Khan, Inayat .
IEEE ACCESS, 2025, 13 :97765-97778
[27]   Emotion recognition in EEG signals using deep learning methods: A review [J].
Jafari, Mahboobeh ;
Shoeibi, Afshin ;
Khodatars, Marjane ;
Bagherzadeh, Sara ;
Shalbaf, Ahmad ;
Garcia, David Lopez ;
Gorriz, Juan M. ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
[28]   Enhancing Speech Emotion Recognition Using Deep Convolutional Neural Networks [J].
Islam, M. M. Manjurul ;
Kabir, Md Alamgir ;
Sheikh, Alamin ;
Saiduzzaman, Muhammad ;
Hafid, Abdelakram ;
Abdullah, Saad .
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, :95-100
[29]   Spontaneous Speech Emotion Recognition Using Multiscale Deep Convolutional LSTM [J].
Zhang, Shiqing ;
Zhao, Xiaoming ;
Tian, Qi .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) :680-688
[30]   Pashto isolated digits recognition using deep convolutional neural network [J].
Zada, Bakht ;
Ullah, Rahim .
HELIYON, 2020, 6 (02)