Exponential distance-based fuzzy clustering for interval-valued data

被引:36
作者
D'Urso, Pierpaolo [1 ]
Massari, Riccardo [1 ]
De Giovanni, Livia [2 ]
Cappelli, Carmela [3 ]
机构
[1] Sapienza Univ Rome, Dipartimento Sci Sociali & Econ, Ple Aldo Moro 5, I-00185 Rome, Italy
[2] LUISS Guido Carli, Dipartimento Sci Polit, Viale Romania 32, I-00197 Rome, Italy
[3] Univ Federico II Napoli, Dipartimento Sci Polit, Via L Rodino 22, I-80138 Naples, Italy
关键词
Interval-valued data; Outlier interval data; Fuzzy C-medoids clustering; Exponential distance; Robust clustering; COMPONENT ANALYSIS; ALGORITHMS;
D O I
10.1007/s10700-016-9238-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In several real life and research situations data are collected in the form of intervals, the so called interval-valued data. In this paper a fuzzy clustering method to analyse interval-valued data is presented. In particular, we address the problem of interval-valued data corrupted by outliers and noise. In order to cope with the presence of outliers we propose to employ a robust metric based on the exponential distance in the framework of the Fuzzy C-medoids clustering mode, the Fuzzy C-medoids clustering model for interval-valued data with exponential distance. The exponential distance assigns small weights to outliers and larger weights to those points that are more compact in the data set, thus neutralizing the effect of the presence of anomalous interval-valued data. Simulation results pertaining to the behaviour of the proposed approach as well as two empirical applications are provided in order to illustrate the practical usefulness of the proposed method.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 50 条
  • [41] Hierarchical Cluster Analysis of Interval-valued Data Using Width of Range Euclidean Distance
    Galdino, Sergio
    Maciel, Paulo
    [J]. 2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 75 - 80
  • [42] Multidimensional scaling of interval-valued dissimilarity data
    Denoeux, T
    Masson, M
    [J]. PATTERN RECOGNITION LETTERS, 2000, 21 (01) : 83 - 92
  • [43] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    [J]. Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [44] Descriptive statistics for symbolic interval-valued data
    Ranganath, H. K.
    Prajneshu
    Ghosh, Himadri
    [J]. INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 84 (03): : 424 - 427
  • [45] Functional linear models for interval-valued data
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel-Salam G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3513 - 3532
  • [46] Nonlinear regression applied to interval-valued data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (03) : 809 - 824
  • [47] Minimal Learning Machine for Interval-Valued Data
    Oliveira, Diego F.
    Barbosa, Nykolas M. M.
    Alencar, Alisson S. C.
    Gomes, Joao Paulo P.
    Rodrigues, Leonardo R.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 188 - 193
  • [48] Testing for stochastic order in interval-valued data
    Choi, Hyejeong
    Lim, Johan
    Kwak, Minjung
    Park, Seongoh
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2019, 32 (06) : 879 - 887
  • [49] A NEURAL NETWORKS APPROACH TO INTERVAL-VALUED DATA CLUSTERING. APPLICATION TO LEBANESE METEOROLOGICAL STATIONS DATA
    Hamdan, Hani
    Hajjar, Chantal
    [J]. 2011 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2011, : 373 - 378
  • [50] Two-dimensional Gaussian hierarchical priority fuzzy modeling for interval-valued data
    Liu, Xiaotian
    Zhao, Tao
    Xie, Xiangpeng
    [J]. INFORMATION SCIENCES, 2023, 630 : 23 - 39