Exponential distance-based fuzzy clustering for interval-valued data

被引:36
作者
D'Urso, Pierpaolo [1 ]
Massari, Riccardo [1 ]
De Giovanni, Livia [2 ]
Cappelli, Carmela [3 ]
机构
[1] Sapienza Univ Rome, Dipartimento Sci Sociali & Econ, Ple Aldo Moro 5, I-00185 Rome, Italy
[2] LUISS Guido Carli, Dipartimento Sci Polit, Viale Romania 32, I-00197 Rome, Italy
[3] Univ Federico II Napoli, Dipartimento Sci Polit, Via L Rodino 22, I-80138 Naples, Italy
关键词
Interval-valued data; Outlier interval data; Fuzzy C-medoids clustering; Exponential distance; Robust clustering; COMPONENT ANALYSIS; ALGORITHMS;
D O I
10.1007/s10700-016-9238-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In several real life and research situations data are collected in the form of intervals, the so called interval-valued data. In this paper a fuzzy clustering method to analyse interval-valued data is presented. In particular, we address the problem of interval-valued data corrupted by outliers and noise. In order to cope with the presence of outliers we propose to employ a robust metric based on the exponential distance in the framework of the Fuzzy C-medoids clustering mode, the Fuzzy C-medoids clustering model for interval-valued data with exponential distance. The exponential distance assigns small weights to outliers and larger weights to those points that are more compact in the data set, thus neutralizing the effect of the presence of anomalous interval-valued data. Simulation results pertaining to the behaviour of the proposed approach as well as two empirical applications are provided in order to illustrate the practical usefulness of the proposed method.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 50 条
  • [31] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [32] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [33] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chen-Chia Chuang
    Jin-Tsong Jeng
    Wei-Yang Lin
    Chih-Ching Hsiao
    Chin-Wang Tao
    International Journal of Fuzzy Systems, 2020, 22 : 891 - 900
  • [34] A fuzzy inference system modeling approach for interval-valued symbolic data forecasting
    Maciel, Leandro
    Ballini, Rosangela
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 139 - 149
  • [35] Clustering of longitudinal interval-valued data via mixture distribution under covariance separability
    Park, Seongoh
    Lim, Johan
    Choi, Hyejeong
    Kwak, Minjung
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (10) : 1739 - 1756
  • [36] New operations for interval-valued Pythagorean fuzzy set
    Peng, X.
    SCIENTIA IRANICA, 2019, 26 (02) : 1049 - 1076
  • [37] InterCriteria Analysis with Interval-Valued Intuitionistic Fuzzy Evaluations
    Atanassov, Krassimir
    Marinov, Pencho
    Atanassova, Vassia
    FLEXIBLE QUERY ANSWERING SYSTEMS, 2019, 11529 : 329 - 338
  • [38] Interval-valued Data Ward's Minimum Variance Clustering - Centroid update Formula
    Dias, Jornandes
    Galdino, Sergio
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 258 - 263
  • [39] Fuzzy clustering algorithm for outlier-interval data based on the robust exponent distance
    Dinh Phamtoan
    Khanh Nguyenhuu
    Tai Vovan
    Applied Intelligence, 2022, 52 : 6276 - 6291
  • [40] Fuzzy clustering algorithm for outlier-interval data based on the robust exponent distance
    Phamtoan, Dinh
    Nguyenhuu, Khanh
    Vovan, Tai
    APPLIED INTELLIGENCE, 2022, 52 (06) : 6276 - 6291