Blocking sets of tangent lines to a hyperbolic quadric in PG(3,3)

被引:5
作者
De Bruyn, Bart [1 ]
Sahoo, Binod Kumar [2 ]
Sahu, Bikramaditya [2 ]
机构
[1] Univ Ghent, Dept Math Algebra & Geometry, Krijgslaan 281 S22, B-9000 Ghent, Belgium
[2] Natl Inst Sci Educ & Res, HBNI, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
关键词
Projective space; Blocking set; Conic; Ovoid; Hyperbolic quadric;
D O I
10.1016/j.dam.2018.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(+)(3, q) be a hyperbolic quadric in PG(3, q) and T be the set of all lines of PG(3, q) which are tangent to Q(+)(3, q). If k is the minimum size of a T-blocking set in PG(3, q), then we prove that q(2) + 1 <= k <= q(2) + q. When q = 3, we show that: (i) there is no T-blocking set of size 10, and (ii) there are exactly two T-blocking sets of size 11 up to isomorphism. By means of the computer algebra systems GAP (The GAP Group, 2014) and Sage (Sage Mathematics Software (Version 6.3), 2014), we find that there exist no T-blocking sets of size q(2) + 1 for each odd prime power q <= 13. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 47 条
[41]   Further Results on Orbits and Incidence Matrices for the Class O6 of Lines External to the Twisted Cubic in PG(3,q) [J].
Davydov, Alexander A. ;
Marcugini, Stefano ;
Pambianco, Fernanda .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (05)
[42]   Orbits of Lines for a Twisted Cubic in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(3,q)$$\end{document} [J].
Alexander A. Davydov ;
Stefano Marcugini ;
Fernanda Pambianco .
Mediterranean Journal of Mathematics, 2023, 20 (3)
[45]   Orbits of the Class O6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}_6$$\end{document} of Lines External to the Twisted Cubic in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(3,q)$$\end{document} [J].
Alexander A. Davydov ;
Stefano Marcugini ;
Fernanda Pambianco .
Mediterranean Journal of Mathematics, 2023, 20 (3)
[46]   Incidence matrices for the class O6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}_6$$\end{document} of lines external to the twisted cubic in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(3,q)$$\end{document} [J].
Alexander A. Davydov ;
Stefano Marcugini ;
Fernanda Pambianco .
Journal of Geometry, 2023, 114 (2)