Blocking sets of tangent lines to a hyperbolic quadric in PG(3,3)

被引:5
作者
De Bruyn, Bart [1 ]
Sahoo, Binod Kumar [2 ]
Sahu, Bikramaditya [2 ]
机构
[1] Univ Ghent, Dept Math Algebra & Geometry, Krijgslaan 281 S22, B-9000 Ghent, Belgium
[2] Natl Inst Sci Educ & Res, HBNI, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
关键词
Projective space; Blocking set; Conic; Ovoid; Hyperbolic quadric;
D O I
10.1016/j.dam.2018.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(+)(3, q) be a hyperbolic quadric in PG(3, q) and T be the set of all lines of PG(3, q) which are tangent to Q(+)(3, q). If k is the minimum size of a T-blocking set in PG(3, q), then we prove that q(2) + 1 <= k <= q(2) + q. When q = 3, we show that: (i) there is no T-blocking set of size 10, and (ii) there are exactly two T-blocking sets of size 11 up to isomorphism. By means of the computer algebra systems GAP (The GAP Group, 2014) and Sage (Sage Mathematics Software (Version 6.3), 2014), we find that there exist no T-blocking sets of size q(2) + 1 for each odd prime power q <= 13. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 47 条
[31]   A Characterisation of the Lines External to an Oval Cone in PG(3, q), q Even [J].
Barwick, S. ;
Butler, David .
JOURNAL OF GEOMETRY, 2009, 93 (1-2) :21-27
[32]   A characterization of the external lines of a hyperoval cone in PG(3, q), q even [J].
Zannetti, Mauro .
DISCRETE MATHEMATICS, 2011, 311 (04) :239-243
[33]   Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points [J].
Harrach, Nora V. ;
Metsch, Klaus .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) :235-248
[34]   Small point sets of PG(n, q3) intersecting each k-subspace in 1 mod q points [J].
Nóra V. Harrach ;
Klaus Metsch .
Designs, Codes and Cryptography, 2010, 56 :235-248
[35]   Characterization results on small blocking sets of the polar spaces Q+ (2n+1,2) and Q+ (2n+1,3) [J].
De Beule, J. ;
Metsch, K. ;
Storme, L. .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) :197-207
[36]   Characterization results on small blocking sets of the polar spaces Q+(2n + 1, 2) and Q+(2n + 1, 3) [J].
J. De Beule ;
K. Metsch ;
L. Storme .
Designs, Codes and Cryptography, 2007, 44 :197-207
[37]   Orbits of the Class O6 of Lines External to the Twisted Cubic in PG(3, q) [J].
Davydov, Alexander A. ;
Marcugini, Stefano ;
Pambianco, Fernanda .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
[38]   Incidence matrices for the class O6 of lines external to the twisted cubic in PG(3, q) [J].
Davydov, Alexander A. ;
Marcugini, Stefano ;
Pambianco, Fernanda .
JOURNAL OF GEOMETRY, 2023, 114 (02)
[39]   On sets of plane-type (0, mq, 2mq)2 in PG(3, q) with a long secant [J].
Napolitano, Vito .
JOURNAL OF GEOMETRY, 2020, 111 (03)
[40]   A geometric construction of a (38,2)-blocking set in PG(2,13) and the related [145,3,133]13 code [J].
Daskalov, Rumen .
DISCRETE MATHEMATICS, 2008, 308 (07) :1341-1345