A Discontinuous Finite Volume Element Method Based on Bilinear Trial Functions

被引:1
|
作者
Zhang, Tie [1 ]
Tang, Lixin [2 ]
机构
[1] Northeastern Univ, Dept Math, Res Ctr Natl Met Automat, Shenyang 110004, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Res Ctr Natl Met Automat, Shenyang 110004, Peoples R China
关键词
Discontinuous finite volume element; bilinear trial function; optimal error estimate; elliptic and parabolic problems; UNIFIED ANALYSIS; CONVERGENCE; SCHEMES;
D O I
10.1142/S0219876217500256
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a discontinuous finite volume element (DFVE) method for second order elliptic and parabolic problems. Discontinuous bilinear functions are used as the trial functions. We give the stability analysis of this DFVE method and derive the optimal error estimates in the broken H-1- norm. Specifically, the optimal L-2- error is obtained for the first time for the bilinear DFVE methods solving elliptic and parabolic problems.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Discontinuous finite element-based domain decomposition method
    Do Carmo, Eduardo Gomes Dutra
    Duarte, André Vinicius Celani
    2000, Elsevier Science S.A., Lausanne, Switzerland (190) : 8 - 10
  • [22] FINITE-ELEMENT METHODS FOR NEUTRON-TRANSPORT BASED ON MAXIMUM AND MINIMUM PRINCIPLES FOR DISCONTINUOUS TRIAL FUNCTIONS
    ACKROYD, RT
    ANNALS OF NUCLEAR ENERGY, 1992, 19 (10-12) : 565 - 592
  • [23] Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations
    Nie, Cunyun
    Shu, Shi
    Yu, Haiyuan
    Wu, Juan
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (02): : 408 - 423
  • [24] The Gradient Superconvergence of Bilinear Finite Volume Element for Elliptic Problems
    Zhang, Tie
    Tang, Lixin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (04) : 579 - 594
  • [25] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [26] An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes
    Mu, Shengying
    Zhou, Yanhui
    AIMS MATHEMATICS, 2023, 8 (10): : 22507 - 22537
  • [27] ON THE FINITE VOLUME ELEMENT METHOD
    CAI, ZQ
    NUMERISCHE MATHEMATIK, 1991, 58 (07) : 713 - 735
  • [28] A discontinuous finite volume method for the Stokes problems
    Ye, X
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 183 - 198
  • [29] Modeling discontinuous rock mass based on smoothed finite element method
    Zhang, Wei
    Dai, Beibing
    Liu, Zhen
    Zhou, Cuiying
    COMPUTERS AND GEOTECHNICS, 2016, 79 : 22 - 30
  • [30] A CONFORMING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
    Ye, Xiu
    Zhang, Shangyou
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (01) : 110 - 117