Neuromorphic device architectures with global connectivity through electrolyte gating

被引:289
作者
Gkoupidenis, Paschalis [1 ]
Koutsouras, Dimitrios A. [1 ]
Malliaras, George G. [1 ]
机构
[1] Ecole Natl Super Mines, CMP EMSE, MOC, Dept Bioelect, F-13541 Gardanne, France
关键词
ORGANIC ELECTROCHEMICAL TRANSISTORS; COINCIDENCE DETECTION; SYNAPTIC PLASTICITY; BRAIN; SYNCHRONIZATION; ENTRAINMENT; MEMRISTOR; BEHAVIOR; SYSTEMS;
D O I
10.1038/ncomms15448
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene): poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   The role of dendrites in auditory coincidence detection [J].
Agmon-Snir, H ;
Carr, CE ;
Rinzel, J .
NATURE, 1998, 393 (6682) :268-272
[3]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[4]  
[Anonymous], NANOTECHNOLOGY
[5]   CAN PROGRAMMING BE LIBERATED FROM VON NEUMANN STYLE - FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS [J].
BACKUS, J .
COMMUNICATIONS OF THE ACM, 1978, 21 (08) :613-641
[6]   Organic bioelectronics [J].
Berggren, Magnus ;
Richter-Dahlfors, Agneta .
ADVANCED MATERIALS, 2007, 19 (20) :3201-3213
[7]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[8]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[9]  
Buzsaki Gyorgy, 2012, Dialogues Clin Neurosci, V14, P345
[10]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]