The biharmonic Neumann problem in Lipschitz domains

被引:49
作者
Verchota, Gregory C. [1 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
关键词
D O I
10.1007/BF02393222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:217 / 279
页数:63
相关论文
共 48 条
  • [1] AGMON S, 1960, P INT S LIN SPAC JER, P1
  • [2] [Anonymous], 1951, ANN MATH STUD
  • [3] [Anonymous], 1974, GRUNDLEHREN MATH WIS
  • [4] Abstract green formula and applications to boundary integral equations
    Bourlard, M
    Nicaise, S
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 667 - 689
  • [5] CALDERON AP, 1983, N HOLLAND MATH STUD, V111, P33
  • [6] Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
  • [7] THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES
    COIFMAN, RR
    MCINTOSH, A
    MEYER, Y
    [J]. ANNALS OF MATHEMATICS, 1982, 116 (02) : 361 - 387
  • [8] THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN
    DAHLBERG, BEJ
    KENIG, CE
    VERCHOTA, GC
    [J]. ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) : 109 - 135
  • [9] BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS
    DAHLBERG, BEJ
    KENIG, CE
    VERCHOTA, GC
    [J]. DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) : 795 - 818
  • [10] Area integral estimates for higher order elliptic equations and systems
    Dahlberg, BEJ
    Kenig, CE
    Pipher, J
    Verchota, GC
    [J]. ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) : 1425 - +