Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries

被引:62
作者
Campanella, Daniele [1 ,2 ]
Belanger, Daniel [2 ]
Paolella, Andrea [1 ]
机构
[1] Hydroquebec, Ctr Excellence Electrificat Transports & Stockage, 1806 Blvd Lionel Boulet, Varennes, PQ J3X 1S1, Canada
[2] Univ Quebec Montreal UQAM, Dept Chim, 2101 Rue Jeanne Mance, Montreal, PQ H3C 3P8, Canada
关键词
Electrolyte; Lithium; Solid-state; Batteries; Halides; Borohydrides; LI-ION-TRANSPORT; DOPED LI7LA3ZR2O12; SUPERIONIC CONDUCTIVITY; INTERFACIAL RESISTANCE; COMPOSITE ELECTROLYTE; CRYSTAL-STRUCTURE; GLASS-CERAMICS; THIN-FILMS; POLYMER; PERFORMANCE;
D O I
10.1016/j.jpowsour.2020.228949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery technology has been steadily approaching its intrinsic limits of energy density and cycling capacity, and solid-state electrolytes offer a more performant solution when compared with traditional organic electrolytes in terms of affinity with Li-metal electrodes and global battery safety. Oxide and sulfide-based solid electrolytes have been abundantly reported in literature owing to their peculiar chemical properties which made them the favourite candidates for practical applications. However, some significant limitations, such as sensitivity against moisture, partial incompatibility with active materials and relatively high costs, lead current research interest towards a series of alternative chemistries and configurations which may overcome their deficiences. Among these new families of Li-superionic conductors halides and hydrides stand out the most for their appealing qualities, including, foremost, values of ionic conductivities above and beyond 10(-3) S cm(-1) at room temperature. Some of the most promising outcomes in research are reported and discussed in the present review, along with a brief outlook of the crucial challenges to face in the field of solid-state batteries and the future developments prospected for energy storage systems.
引用
收藏
页数:21
相关论文
共 149 条
[41]   Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries [J].
Hayashi, Akitoshi ;
Muramatsu, Hiromasa ;
Ohtomo, Takamasa ;
Hama, Sigenori ;
Tatsumisago, Masahiro .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 591 :247-250
[42]  
Hayashi A, 2013, PHYS CHEM GLASSES-B, V54, P109
[43]   Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells [J].
Helena Braga, M. ;
Murchison, Andrew J. ;
Ferreira, Jorge A. ;
Singh, Preetam ;
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) :948-954
[44]   Crystal Structure of Li2B12H12: a Possible Intermediate Species in the Decomposition of LiBH4 [J].
Her, Jae-Hyuk ;
Yousufuddin, Muhammed ;
Zhou, Wei ;
Jalisatgi, Satish S. ;
Kulleck, James G. ;
Zan, Jason A. ;
Hwang, Son-Jong ;
Bowman, Robert C., Jr. ;
Udovic, Terrence J. .
INORGANIC CHEMISTRY, 2008, 47 (21) :9757-9759
[45]   ELECTRONIC CONDUCTIVITY IN MOLTEN LITHIUM CHLORIDE POTASSIUM CHLORIDE EUTECTIC [J].
HEUS, RJ ;
EGAN, JJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1973, 77 (16) :1989-1993
[46]   Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes [J].
Hood, Zachary D. ;
Wang, Hui ;
Pandian, Amaresh Samuthira ;
Keum, Jong Kahk ;
Liang, Chengdu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (06) :1768-1771
[47]   High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries [J].
Hu, Jiulin ;
Yao, Zhenguo ;
Chen, Keyi ;
Li, Chilin .
ENERGY STORAGE MATERIALS, 2020, 28 :37-46
[48]   Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life [J].
Huang, Kai ;
Li, Zhi ;
Xu, Qunjie ;
Liu, Haimei ;
Li, Hexing ;
Wang, Yonggang .
ADVANCED ENERGY MATERIALS, 2019, 9 (29)
[49]   Ionic conduction mechanism of a lithium superionic argyrodite in the Li-Al-Si-S-O system [J].
Huang, Wenze ;
Cheng, Lindong ;
Hori, Satoshi ;
Suzuki, Kota ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
MATERIALS ADVANCES, 2020, 1 (03) :334-340
[50]   Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system [J].
Huang, Wenze ;
Yoshino, Kazuhiro ;
Hori, Satoshi ;
Suzuki, Kota ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF SOLID STATE CHEMISTRY, 2019, 270 :487-492