Genetic algorithms for parameter estimation in modelling of index returns

被引:1
|
作者
Franco, Manuel [1 ]
Vivo, Juana-Maria [1 ]
机构
[1] Univ Murcia, Dept Stat & Res Operat, Campus Mare Nostrum, Murcia, Spain
来源
EUROPEAN JOURNAL OF FINANCE | 2018年 / 24卷 / 13期
关键词
financial market index; SMI returns; genetic algorithms; distribution models; goodness-of-fit; BEHAVIOR;
D O I
10.1080/1351847X.2017.1392332
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The main aim for this paper is motivated by the usefulness of genetic algorithms (GAs) for the fitting of distribution models to financial market data. In detail, we use a GA along with the least squares method in order to achieve a more relatively accurate and robust approach for optimizing non-linear objective functions. The combination of these two methods is applied for fitting parametric distributions to a dataset of market index returns, improving the methodology of cumulative returns prediction. The process of extrapolation plays a fundamental role in this area of analysis, being essential to empirically fit a convenient distribution that describes the available data as closely as possible. For comparison and illustrative purpose, we analyse distribution models used in the financial literature for modelling such dataset, and then the practical application is carried out again on a more updated dataset from the same financial index. In addition, a brief simulation study is developed to illustrate the usefulness of the proposal procedure.
引用
收藏
页码:1088 / 1099
页数:12
相关论文
共 50 条
  • [31] Parameter estimation in mathematical models using the real coded genetic algorithms
    Tutkun, Nedim
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3342 - 3345
  • [32] Parameter estimation for an induction motor dynamic model using genetic algorithms
    Guangdong Univ of Technology, Guangzhou, China
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2000, 20 (08): : 37 - 41
  • [33] Modelling and Estimation for Bivariate Financial Returns
    Fung, Thomas
    Seneta, Eugene
    INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (01) : 117 - 133
  • [34] Parameter estimation in stock assessment modelling: caveats with gradient-based algorithms
    Subbey, Sam
    ICES JOURNAL OF MARINE SCIENCE, 2018, 75 (05) : 1553 - 1559
  • [35] Ultrasonic Signal Modelling and Parameter Estimation: A Comparative Study Using Optimization Algorithms
    Anuraj, K.
    Poorna, S. S.
    Saikumar, C.
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 99 - 107
  • [36] Modelling Study Of Supercritical Power Plant And Parameter Identification Using Genetic Algorithms
    Mohamed, Omar
    Wang, Jihong
    Guo, Shen
    Al-Duri, Bushra
    Wei, Jianlin
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL II, 2010, : 973 - 978
  • [37] Decomposed algorithms for parameter estimation
    VelezReyes, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 577 - 578
  • [38] Recursive parameter estimation algorithms
    Navratil, P.
    Bobal, V
    ANNALS OF DAAAM FOR 2005 & PROCEEDINGS OF THE 16TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON YOUNG RESEARCHES AND SCIENTISTS, 2005, : 269 - 270
  • [39] Parameter Estimation of High-Voltage Circuit Breaker Based on Genetic Algorithms
    Jin, Tao
    Chen, Wei
    Ning, Tao
    Li, Zhihua
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL I, 2010, : 91 - 94
  • [40] Parameter estimation methods to determine hydraulic properties of aquifers using genetic algorithms
    Takeshita, Y
    Yasui, K
    Uekuma, H
    Nishimura, A
    GROUND WATER UPDATES, 2000, : 469 - 470