Feature-preserving T-mesh construction using skeleton-based polycubes

被引:71
作者
Liu, Lei [1 ]
Zhang, Yongjie [1 ]
Liu, Yang [2 ]
Wang, Wenping [3 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Microsoft Res, Beijing, Peoples R China
[3] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Skeleton; Polycube; Feature preservation; T-mesh; Trivariate T-splines; Isogeometric analysis; MEDIAL SURFACE SUBDIVISION; ISOGEOMETRIC ANALYSIS; SPLINE CONSTRUCTION; GENERATION; NURBS; PARAMETERIZATION; GEOMETRY; SOLIDS; DOMAIN; CAD;
D O I
10.1016/j.cad.2014.08.020
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a novel algorithm which uses skeleton-based polycube generation to construct feature-preserving T-meshes. From the skeleton of the input model, we first construct initial cubes in the interior. By projecting corners of interior cubes onto the surface and generating a new layer of boundary cubes, we split the entire interior domain into different cubic regions. With the splitting result, we perform octree subdivision to obtain T-spline control mesh or T-mesh. Surface features are classified into three groups: open curves, closed curves and singularity features. For features without introducing new singularities like open or closed curves, we preserve them by aligning to the parametric lines during subdivision, performing volumetric parameterization from frame field, or modifying the skeleton. For features introducing new singularities, we design templates to handle them. With a valid T-mesh, we calculate rational trivariate T-splines and extract Bezier elements for isogeometric analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:162 / 172
页数:11
相关论文
共 44 条
[1]   Skeleton extraction by mesh contraction [J].
Au, Oscar Kin-Chung ;
Tai, Chiew-Lan ;
Chu, Hung-Kuo ;
Cohen-Or, Daniel ;
Lee, Tong-Yee .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03)
[2]   Isogeometric analysis of Lagrangian hydrodynamics [J].
Bazilevs, Y. ;
Akkerman, I. ;
Benson, D. J. ;
Scovazzi, G. ;
Shashkov, M. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 243 :224-243
[3]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[4]  
COHEN E., 2001, GEOMETRIC MODELING S
[5]   Curve-skeleton properties, applications, and algorithms [J].
Cornea, Nicu D. ;
Silver, Deborah ;
Min, Patrick .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (03) :530-548
[6]   A new approach to solid modeling with trivariate T-splines based on mesh optimization [J].
Escobar, J. M. ;
Cascon, J. M. ;
Rodriguez, E. ;
Montenegro, R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (45-46) :3210-3222
[7]  
Goldman R, 1993, KNOT INSERTION DELEC
[8]   All-Hex Mesh Generation via Volumetric PolyCube Deformation [J].
Gregson, James ;
Sheffer, Alla ;
Zhang, Eugene .
COMPUTER GRAPHICS FORUM, 2011, 30 (05) :1407-1416
[9]   l1-Based Construction of Polycube Maps from Complex Shapes [J].
Huang, Jin ;
Jiang, Tengfei ;
Shi, Zeyun ;
Tong, Yiying ;
Bao, Hujun ;
Desbrun, Mathieu .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (03)
[10]   Boundary Aligned Smooth 3D Cross-Frame Field [J].
Huang, Jin ;
Tong, Yiying ;
Wei, Hongyu ;
Bao, Hujun .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (06)