Clustering of short time-course gene expression data with dissimilar replicates

被引:1
|
作者
Cinar, Ozan [1 ]
Ilk, Ozlem [2 ]
Iyigun, Cem [3 ]
机构
[1] Maastricht Univ, Dept Psychiat & Neuropsychol, Maastricht, Netherlands
[2] Middle East Tech Univ, Dept Stat, Ankara, Turkey
[3] Middle East Tech Univ, Dept Ind Engn, Ankara, Turkey
关键词
Microarray gene expression; Short time-series; Replication; Distance; Clustering; Cluster validation; SERIES DATA; MICROARRAY EXPERIMENTS; FORECAST DENSITIES; DNA MICROARRAY; CELL-CYCLE; PROFILES; PATTERNS; MODEL; CLASSIFICATION; IDENTIFICATION;
D O I
10.1007/s10479-017-2583-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Microarrays are used in genetics and medicine to examine large numbers of genes simultaneously through their expression levels under any condition such as a disease of interest. The information from these experiments can be enriched by following the expression levels through time and biological replicates. The purpose of this study is to propose an algorithm which clusters the genes with respect to the similarities between their behaviors through time. The algorithm is also aimed at highlighting the genes which show different behaviors between the replicates and separating the constant genes that keep their baseline expression levels throughout the study. Finally, we aim to feature cluster validation techniques to suggest a sensible number of clusters when it is not known a priori. The illustrations show that the proposed algorithm in this study offers a fast approach to clustering the genes with respect to their behavior similarities, and also separates the constant genes and the genes with dissimilar replicates without any need for pre-processing. Moreover, it is also successful at suggesting the correct number of clusters when that is not known.
引用
收藏
页码:405 / 428
页数:24
相关论文
共 50 条
  • [1] Clustering of short time-course gene expression data with dissimilar replicates
    Ozan Cinar
    Ozlem Ilk
    Cem Iyigun
    Annals of Operations Research, 2018, 263 : 405 - 428
  • [2] Clustering of time-course gene expression data using functional data analysis
    Song, Joon Jin
    Lee, Ho-Jin
    Morris, Jeffrey S.
    Kang, Sanghoon
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (04) : 265 - 274
  • [3] A method to identify differential expression profiles of time-course gene data with Fourier transformation
    Kim, Jaehee
    Ogden, Robert Todd
    Kim, Haseong
    BMC BIOINFORMATICS, 2013, 14
  • [4] A recursively partitioned mixture model for clustering time-course gene expression data
    Koestler, Devin C.
    Marsit, Carmen J.
    Christensen, Brock C.
    Kelsey, Karl T.
    Houseman, E. Andres
    TRANSLATIONAL CANCER RESEARCH, 2014, 3 (03) : 217 - +
  • [5] BAYESIAN CLUSTERING OF REPLICATED TIME-COURSE GENE EXPRESSION DATA WITH WEAK SIGNALS
    Fu, Audrey Qiuyan
    Russell, Steven
    Bray, Sarah J.
    Tavare, Simon
    ANNALS OF APPLIED STATISTICS, 2013, 7 (03) : 1334 - 1361
  • [6] Time-course data prediction for repeatedly measured gene expression
    Bhattacharjee, Atanu
    Vishwakarma, Gajendra K.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (04)
  • [7] A novel HMM-based clustering algorithm for the analysis of gene expression time-course data
    Zeng, YJ
    Garcia-Frias, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2472 - 2494
  • [8] A modified correlation coefficient based similarity measure for clustering time-course gene expression data
    Son, Young Sook
    Baek, Jangsun
    PATTERN RECOGNITION LETTERS, 2008, 29 (03) : 232 - 242
  • [9] Multimodal probabilistic generative models for time-course gene expression data and Gene Ontology (GO) tags
    Gabbur, Prasad
    Hoying, James
    Barnard, Kobus
    MATHEMATICAL BIOSCIENCES, 2015, 268 : 80 - 91
  • [10] Time-Course Gene Set Analysis for Longitudinal Gene Expression Data
    Hejblum, Boris P.
    Skinner, Jason
    Thiebaut, Rodolphe
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)