Test sets for factorization properties of modules

被引:9
作者
Saroch, Jan [1 ]
Trlifaj, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2020年 / 144卷
关键词
Projective module; factorization class; cotorsion pair; Dedekind domain; lambda-purity; Weak Diamond Principle; strongly compact cardinal; APPROXIMATIONS;
D O I
10.4171/RSMUP/66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring R and on additional set-theoretic hypotheses. For R commutative noetherian of Krull dimension 0 < d < infinity, we show that the assertion `projectivity is a factorization property with respect to a single epimorphism' is independent of ZFC + GCH. We also show that if R is any ring and there exists a strongly compact cardinal kappa > vertical bar R vertical bar, then the category of all projective modules is kappa-accessible.
引用
收藏
页码:217 / 238
页数:22
相关论文
共 27 条
  • [1] Anderson-K F. W., 1992, GRADUATE TEXTS MATH, V13
  • [2] Baer R., 1940, B AM MATH SOC, V46, P800, DOI 10.1090/S0002-9904-1940-07306-9
  • [3] FLAT MITTAG-LEFFLER MODULES OVER COUNTABLE RINGS
    Bazzoni, Silvana
    Stovicek, Jan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1527 - 1533
  • [4] Periodic flat modules, and flat modules for finite groups
    Benson, DJ
    Goodearl, KR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) : 45 - 67
  • [5] On the cogeneration of cotorsion pairs
    Eklof, PC
    Shelah, S
    Trlifaj, J
    [J]. JOURNAL OF ALGEBRA, 2004, 277 (02) : 572 - 578
  • [6] ON WHITEHEAD MODULES
    EKLOF, PC
    SHELAH, S
    [J]. JOURNAL OF ALGEBRA, 1991, 142 (02) : 492 - 510
  • [7] Eklof-A P. C., 2002, N HOLLAND MATH LIB, V65
  • [8] Enochs E.E., 2011, De Gruyter Expositions in Mathematics, V30
  • [9] Equivalence of some homological conditions for ring epimorphisms
    Facchini, Alberto
    Nazemian, Zahra
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (04) : 1440 - 1455
  • [10] Fuchs L., 2001, MATH SURVEYS MONOGRA, V84