Endogenous xylose pathway in Saccharomyces cerevisiae

被引:22
作者
Toivari, MH [1 ]
Salusjärvi, L [1 ]
Ruohonen, L [1 ]
Penttilä, M [1 ]
机构
[1] VTT Biotechnol, FIN-02044 Espoo, Finland
关键词
D O I
10.1128/aem.70.6.3681-3686.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source.
引用
收藏
页码:3681 / 3686
页数:6
相关论文
共 50 条
[41]   Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae [J].
Lee, WJ ;
Kim, MD ;
Ryu, YW ;
Bisson, LF ;
Seo, JH .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 60 (1-2) :186-191
[42]   Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose [J].
Sonderegger, M ;
Sauer, U .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) :1990-1998
[43]   Xylose Metabolization by a Saccharomyces cerevisiae Strain Isolated in Colombia [J].
Lagos, Margareth Andrea Patino ;
Caviativa, Jorge Alejandro Cristancho ;
Pinzon, Diana Carolina Tusso ;
Roa, Diego Hernando Romero ;
Basso, Thiago Olitta ;
Lozano, Mario Enrique Velasquez .
INDIAN JOURNAL OF MICROBIOLOGY, 2023, 63 (01) :84-90
[44]   Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae [J].
David Runquist ;
Bärbel Hahn-Hägerdal ;
Peter Rådström .
Biotechnology for Biofuels, 3
[45]   CONSTRUCTION OF XYLOSE-ASSIMILATING SACCHAROMYCES-CEREVISIAE [J].
TANTIRUNGKIJ, M ;
NAKASHIMA, N ;
SEKI, T ;
YOSHIDA, T .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1993, 75 (02) :83-88
[46]   Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae [J].
Runquist, David ;
Hahn-Hagerdal, Barbel ;
Radstrom, Peter .
BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
[47]   An improved method of xylose utilization by recombinant Saccharomyces cerevisiae [J].
Ma, Tien-Yang ;
Lin, Ting-Hsiang ;
Hsu, Teng-Chieh ;
Huang, Chiung-Fang ;
Guo, Gia-Luen ;
Hwang, Wen-Song .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (10) :1477-1486
[48]   Xylose Metabolization by a Saccharomyces cerevisiae Strain Isolated in Colombia [J].
Margareth Andrea Patiño Lagos ;
Jorge Alejandro Cristancho Caviativa ;
Diana Carolina Tusso Pinzón ;
Diego Hernando Romero Roa ;
Thiago Olitta Basso ;
Mario Enrique Velásquez Lozano .
Indian Journal of Microbiology, 2023, 63 :84-90
[49]   Functional Expression of a Bacterial Xylose Isomerase in Saccharomyces cerevisiae [J].
Brat, Dawid ;
Boles, Eckhard ;
Wiedemann, Beate .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (08) :2304-2311
[50]   Synthetic regulon in Saccharomyces cerevisiae for efficient xylose assimilation [J].
Gopinarayanan, Venkatesh Endalur ;
Nair, Nikhil U. .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251