Endogenous xylose pathway in Saccharomyces cerevisiae

被引:22
作者
Toivari, MH [1 ]
Salusjärvi, L [1 ]
Ruohonen, L [1 ]
Penttilä, M [1 ]
机构
[1] VTT Biotechnol, FIN-02044 Espoo, Finland
关键词
D O I
10.1128/aem.70.6.3681-3686.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source.
引用
收藏
页码:3681 / 3686
页数:6
相关论文
共 50 条
[31]   Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae [J].
Laura Salusjärvi ;
Matti Kankainen ;
Rabah Soliymani ;
Juha-Pekka Pitkänen ;
Merja Penttilä ;
Laura Ruohonen .
Microbial Cell Factories, 7
[32]   Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation [J].
Hector, Ronald E. ;
Mertens, Jeffrey A. ;
Bowman, Michael J. ;
Nichols, Nancy N. ;
Cotta, Michael A. ;
Hughes, Stephen R. .
YEAST, 2011, 28 (09) :645-660
[33]   Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling [J].
Brink, Daniel P. ;
Borgstrom, Celina ;
Tueros, Felipe G. ;
Gorwa-Grauslund, Marie F. .
MICROBIAL CELL FACTORIES, 2016, 15
[34]   Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling [J].
Daniel P. Brink ;
Celina Borgström ;
Felipe G. Tueros ;
Marie F. Gorwa-Grauslund .
Microbial Cell Factories, 15
[35]   Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway [J].
Borgstrom, Celina ;
Wasserstrom, Lisa ;
Almqvist, Henrik ;
Broberg, Kristina ;
Klein, Bianca ;
Noack, Stephan ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
METABOLIC ENGINEERING, 2019, 55 (1-11) :1-11
[36]   Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene [J].
Ji-Hye Han ;
Ju-Yong Park ;
Kye Sang Yoo ;
Hyun Woo Kang ;
Gi-Wook Choi ;
Bong-Woo Chung ;
Jiho Min .
Archives of Microbiology, 2011, 193 :335-340
[37]   Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase [J].
P. Chandrakant ;
V. S. Bisaria .
Applied Microbiology and Biotechnology, 2000, 53 :301-309
[38]   Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase [J].
Chandrakant, P ;
Bisaria, VS .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (03) :301-309
[39]   Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene [J].
Han, Ji-Hye ;
Park, Ju-Yong ;
Yoo, Kye Sang ;
Kang, Hyun Woo ;
Choi, Gi-Wook ;
Chung, Bong-Woo ;
Min, Jiho .
ARCHIVES OF MICROBIOLOGY, 2011, 193 (05) :335-340
[40]   Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism [J].
Kim, Soo Rin ;
Park, Yong-Cheol ;
Jin, Yong-Su ;
Seo, Jin-Ho .
BIOTECHNOLOGY ADVANCES, 2013, 31 (06) :851-861