Late Cenozoic sedimentary environments in the Amundsen Basin, Arctic Ocean

被引:14
|
作者
Svindland, KT [1 ]
Vorren, TO [1 ]
机构
[1] Univ Tromso, Dept Geol, N-9037 Tromso, Norway
关键词
Arctic Ocean; sediment facies; sedimentation rates; turbidites; clay mineralogy;
D O I
10.1016/S0025-3227(02)00197-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Analyses of sediment cores recovered on the Arctic '91 cruise with RV Polarstern to the Amundsen Basin and Lomonosov Ridge identify four main sedimentary facies and associated depositional sedimentary processes. These include: (1) homogenous mud facies interpreted as hemipelagic deposits, most abundant in the central parts of the Amundsen Basin; (2) fining upward cycle facies interpreted as fine-grained distal turbidite deposits, present in all Amundsen Basin cores, but most abundant laterally in the basin; (3) massive diamicton facies, found in the North Pole core; and (4) laminated diamicton facies, abundant in the upper parts of Lomonosov Ridge cores. Both diamictons are heavily influenced by ice-rafted debris, and the massive diamicton may result from redeposition of laminated diamicton downslope from the Lomonosov Ridge. The Lomonosov Ridge core exhibits a sedimentation rate of 29 mm/ka, while the sedimentation rates of turbidite rich sediments of the Amundsen Basin may be up to 10 times as high. Clay minerals show that the eastern Kara Sea and the Laptev Sea is the source area for most of the sediments, while some clay mineral zones may have their source in northern Greenland or the Barents Sea shelf. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:541 / 555
页数:15
相关论文
共 50 条
  • [21] Sedimentary Rocks in the Basement of the Alpha–Mendeleev Rise, Arctic Ocean
    S. G. Skolotnev
    S. I. Freiman
    A. I. Khisamutdinova
    B. V. Ermolaev
    O. I. Okina
    T. S. Skolotneva
    Lithology and Mineral Resources, 2022, 57 : 121 - 142
  • [22] Clay minerals as indicators of late quaternary sedimentation constraints in the Mendeleev Rise, Amerasian Basin, Arctic Ocean
    A. A. Krylov
    R. Stein
    L. A. Ermakova
    Lithology and Mineral Resources, 2014, 49 : 103 - 116
  • [23] Molecular Geochemistry of the Dispersed Organic Matter in the Late Cenozoic Sediments of the Laptev Sea Continental Margin and Adjacent Part of the Arctic Ocean
    Petrova, V., I
    Batova, G., I
    Kursheva, A., V
    Litvinenko, I., V
    Morgunova, I. P.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2021, 62 (04) : 460 - 473
  • [24] Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean)
    Darnis, Gerald
    Fortier, Louis
    JOURNAL OF PLANKTON RESEARCH, 2014, 36 (04) : 1092 - 1108
  • [25] Heat Flow in the Western Arctic Ocean (Amerasian Basin)
    Ruppel, C. D.
    Lachenbruch, A. H.
    Hutchinson, D. R.
    Munroe, R. J.
    Mosher, D. C.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (08) : 7562 - 7587
  • [26] Distribution of crustal types in Canada Basin, Arctic Ocean
    Chian, D.
    Jackson, H. R.
    Hutchinson, D. R.
    Shimeld, J. W.
    Oakey, G. N.
    Lebedeva-Ivanova, N.
    Li, Q.
    Saltus, R. W.
    Mosher, D. C.
    TECTONOPHYSICS, 2016, 691 : 8 - 30
  • [27] Kinematic model of the opening of the Canadian Basin, Arctic Ocean
    Al. A. Schreider
    L. I. Lobkovsky
    A. A. Schreider
    Oceanology, 2013, 53 : 481 - 490
  • [28] Nitrogen Isotope Evidence for Changing Arctic Ocean Ventilation Regimes During the Cenozoic
    Knies, Jochen
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (17)
  • [29] Sedimentary Rocks in the Basement of the Alpha-Mendeleev Rise, Arctic Ocean
    Skolotnev, S. G.
    Freiman, S., I
    Khisamutdinova, A., I
    Ermolaev, B., V
    Okina, O., I
    Skolotneva, T. S.
    LITHOLOGY AND MINERAL RESOURCES, 2022, 57 (02) : 121 - 142
  • [30] Scavenging of thorium isotopes in the Canada basin of the Arctic Ocean
    Trimble, SM
    Baskaran, M
    Porcelli, D
    EARTH AND PLANETARY SCIENCE LETTERS, 2004, 222 (3-4) : 915 - 932