Correct interpretation of nanofluid convective heat transfer

被引:69
作者
Buschmann, M. H. [1 ]
Azizian, R. [2 ]
Kempe, T. [1 ]
Julia, J. E. [3 ]
Martinez-Cuenca, R. [3 ]
Sunden, B. [4 ]
Wu, Z. [4 ]
Seppala, A. [5 ]
Ala-Nissila, T. [6 ,7 ,8 ,9 ]
机构
[1] Inst Luft & Kaltetech Dresden, D-01309 Dresden, Germany
[2] MIT, Nucl Sci & Engn Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Jaume 1, Dept Ingn Mecan & Construcc, Castellon De La Plana 12071, Spain
[4] Lund Univ, Dept Energy Sci, POB 118, SE-22100 Lund, Sweden
[5] Aalto Univ, Sch Engn, Dept Mech Engn Thermodynam & Combust Technol, POB 14400, FI-00076 Aalto, Finland
[6] Aalto Univ, Sch Sci, Dept Appl Phys, POB 11000, FI-00076 Espoo, Finland
[7] Aalto Univ, Sch Sci, COMP Ctr Excellence, POB 11000, FI-00076 Espoo, Finland
[8] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[9] Loughborough Univ Technol, Dept Phys, Loughborough LE11 3TU, Leics, England
基金
瑞典研究理事会; 芬兰科学院;
关键词
Convective heat transfer; Newtonian nanofluids; Pipe; Twisted-tape; Coil heat exchanger; Counterflow heat exchanger; Plate heat exchanger; WATER-BASED NANOFLUIDS; PRESSURE-DROP; THERMAL-CONDUCTIVITY; CERAMIC NANOFLUIDS; ALUMINA-WATER; TWISTED-TAPE; FLOW; EXCHANGER; PIPE; PERFORMANCE;
D O I
10.1016/j.ijthermalsci.2017.11.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Engineers and scientist have a long tradition in trying to improve the thermophysical properties of convective heat carriers such as water and transformer oil. Technological developments of the last decades allow the dispersion of particle of sizes ranging between 10 and 100 nm in these liquids. In a large number of recent studies the resulting nanofluids have been reported to display anomalously high increase of convective heat transfer. The present study compiles experiments from five independent research teams investigating convective heat transfer in nanofluid flow in pipes, pipe with inserted twisted tape, annular counter flow heat exchanger, and coil and plate heat exchangers. The results of all these experiments unequivocally confirm that Newtonian nanofluid flow can be consistently characterized by employing Nusselt number correlations obtained for single-phase heat transfer liquids such as water when the correct thermophysical properties of the nanofluid are utilized. It is also shown that the heat transfer enhancement provided by nanofluids equals the increase in the thermal conductivity of the nanofluid as compared to the base fluid independent of the nanoparticle concentration or material. These results demonstrate that no anomalous phenomena are involved in thermal conduction and forced convection based heat transfer of nanofluids. The experiments are theoretically supported by a fundamental similarity analysis of nanoparticle motion in nanofluid flow.
引用
收藏
页码:504 / 531
页数:28
相关论文
共 50 条
  • [41] The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes
    Sun, Bin
    Guo, Yongjian
    Yang, Di
    Li, Hongwei
    APPLIED THERMAL ENGINEERING, 2020, 171 (171)
  • [42] Turbulent Convective Heat Transfer of Nanofluids
    Hosseini, Seyyed Hossein
    Javadi, Seyyed Mohammad
    Ebrahimnia-Bajestan, Ehsan
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3873 - +
  • [43] Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink
    Chabi, A. R.
    Zarrinabadi, S.
    Peyghambarzadeh, S. M.
    Hashemabadi, S. H.
    Salimi, M.
    HEAT AND MASS TRANSFER, 2017, 53 (02) : 661 - 671
  • [44] Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam
    Nazari, Mohsen
    Ashouri, Mojtaba
    Kayhani, Mohammad Hasan
    Tamayol, Ali
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 88 : 33 - 39
  • [45] EXPERIMENTAL STUDY OF CuO/WATER NANOFLUID TURBULENT CONVECTIVE HEAT TRANSFER IN SQUARE CROSS-SECTION DUCT
    Mehrjou, B.
    Heris, S. Zeinali
    Mohamadifard, K.
    EXPERIMENTAL HEAT TRANSFER, 2015, 28 (03) : 282 - 297
  • [46] A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs
    Ekiciler, Recep
    Cetinkaya, Muhammet Samet Ali
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 23 (23)
  • [47] Investigation of convective-conductive heat transfer in geothermal system
    Jalili, P.
    Ganji, D. D.
    Nourazar, S. S.
    RESULTS IN PHYSICS, 2018, 10 : 568 - 587
  • [48] Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid
    Afshari, Faraz
    Sozen, Adnan
    Khanlari, Ataollah
    Tuncer, Azim Dogus
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (11) : 3297 - 3309
  • [49] Convective heat transfer and friction factor characteristics of helical strip inserted annuli at turbulent flow
    Tusar, Mehedi Hasan
    Bhowmik, Palash Kumar
    Salam, Bodius
    Ahamed, Jamal Uddin
    Kim, Jung Kyung
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [50] Convective heat transfer and flow characteristics of Cu-water nanofluid
    Qiang Li
    Yimin Xuan
    Science in China Series E: Technolgical Science, 2002, 45 (4): : 408 - 416