Study of surface finish of fiber-reinforced composite molds

被引:7
|
作者
Chardon, Gregory [1 ]
Chanal, Helene [2 ]
Duc, Emmanuel [2 ]
Garnier, Thierry [3 ]
机构
[1] Univ Lyon, UMR 5513, Lab Tribol & Dynam Syst, ENISE,CNRS, Lyon, France
[2] Clermont Univ, UMR 6602, Inst Pascal, IFMA,CNRS, BP 10448, Clermont Ferrand, France
[3] Asahi Diamond Ind Europe SAS, Chartres, France
关键词
Carbon fiber-reinforced composite; machining; grinding; mold; AUTOMATIC POLISHING PROCESS; ROUGHNESS; PREDICTION; DESIGN; FORCE;
D O I
10.1177/0954405415617929
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the primary processes for the production of composite parts is the liquid composite molding process. This process is based on the injection of resin into a mold, which is usually metallic. Today, studies are being undertaken to produce these molds using Hextool (TM), a carbon fiber-reinforced thermosetting plastic. The molds, constructed by draping prepregs, must be finished by free-form machining to ensure the dimensional and surface quality requirements. An arithmetic roughness of 0.8 mu m is required, and this quality is not attained by milling operations. Thus, a manual polishing operation is necessary. However, to minimize the time taken by this manual operation, it is necessary to verify the roughness obtained by milling. Thus, the work presented in this article consists first of a study of the capability of milling to produce molds from Hextool with given surface quality requirements. The conclusion of this study is to define values of radial depth of cut to attain a surface quality with minimum machining time. Second, this work highlights how to replace the manual polishing operation by a machining operation with an abrasive diamond tool. Thus, the capability of an abrasive diamond tool to machine a mold with high surface requirements is discussed.
引用
收藏
页码:576 / 587
页数:12
相关论文
共 50 条
  • [41] Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates
    Batra, R. C.
    Gopinath, G.
    Zheng, J. Q.
    COMPOSITE STRUCTURES, 2012, 94 (02) : 540 - 547
  • [42] Effect of Ultraviolet Irradiation on the Material Properties and Acoustic Emission of a Fiber-reinforced Composite
    Jung, Doyun
    Mizutani, Yoshihiro
    Todoroki, Akira
    Na, Wonjin
    FIBERS AND POLYMERS, 2021, 22 (07) : 1940 - 1949
  • [43] Prediction of the thermal conductivity of the constituents of fiber-reinforced composite laminates: Voids effect
    Al-Sulaiman, Faleh A.
    Al-Nassar, Yaagoub N.
    Mokheimer, Esmail M. A.
    JOURNAL OF COMPOSITE MATERIALS, 2006, 40 (09) : 797 - 814
  • [44] Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites
    Choi, Jeong-Il
    Park, Se-Eon
    Kim, Yun Yong
    Lee, Bang Yeon
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361
  • [45] Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite
    Nematollahi, Behzad
    Sanjayan, Jay
    Shaikh, Faiz Uddin Ahmed
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (10)
  • [46] Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite
    Pohl, Anna
    Herrera, Steven A.
    Restrepo, David
    Negishi, Ryo
    Jung, Jae-Young
    Salinas, Chris
    Wuhrer, Richard
    Yoshino, Tomoko
    McKittrick, Joanna
    Arakaki, Atsushi
    Nemoto, Michiko
    Zavattieri, Pablo
    Kisailus, David
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 111 (111)
  • [47] Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite
    Feng, G. H.
    Yang, Y. Q.
    Luo, X.
    Li, J.
    Huang, B.
    Chen, Y.
    COMPOSITES PART B-ENGINEERING, 2015, 68 : 336 - 342
  • [48] A method of improving fiber-reinforced composite workpiece surface quality during the machining on 5-axis CNC machines
    Shchurov, I. A.
    INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING (ICIE-2015), 2015, 129 : 99 - 104
  • [49] Flexural Behavior of Steel Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Wu, Tao
    Sun, Yijia
    Liu, Xi
    Wei, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (02)
  • [50] Machinability study of carbon fiber reinforced composite
    Rahman, M
    Ramakrishna, S
    Prakash, JRS
    Tan, DCG
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1999, 90 : 292 - 297