An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain

被引:27
作者
Shi, Y. H. [1 ]
Liu, F. [2 ,3 ]
Zhao, Y. M. [1 ]
Wang, F. L. [1 ]
Turner, I. [2 ,4 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Queensland Univ Technol, Australian Res Council, Ctr Excellence Math & Stat Frontiers ACEMS, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Multi-term time fractional derivatives; Riesz space distributed-order wave equation; Finite element method; Irregular convex domain; Stability and convergence; COMPACT DIFFERENCE SCHEME; BLOCH-TORREY EQUATIONS; DIFFUSION EQUATION; NUMERICAL-SOLUTION; SPECTRAL METHOD;
D O I
10.1016/j.apm.2019.04.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the numerical analysis for a multi-term time fracstional and Riesz space distributed-order wave equation is discussed on an irregular convex domain. Firstly, the equation is transformed into a multi-term time-space fractional wave equation using the mid-point quadrature rule to approximate the distributed-order Riesz space derivative. Next, the equation is solved by discretising in time using a Crank-Nicolson scheme and in space using the finite element method (FEM) with an unstructured mesh, respectively. Furthermore, stability and convergence are investigated by introducing some important lemmas on irregular convex domain. Finally, some examples are provided to show the effectiveness and correctness of the proposed numerical method. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:615 / 636
页数:22
相关论文
共 67 条
  • [1] [Anonymous], 2001, Frac. Calc. Appl. Anal
  • [2] [Anonymous], 2000, THESIS
  • [3] Poisson equations in irregular domains with Robin boundary conditions - Solver with second-order accurate gradients
    Arias, Victoria
    Bochkov, Daniil
    Gibou, Frederic
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 365 : 1 - 6
  • [4] On a nonlinear distributed order fractional differential equation
    Atanackovic, Teodor M.
    Oparnica, Ljubica
    Pihpovic, Stevan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 590 - 608
  • [5] Time distributed-order diffusion-wave equation. I. Volterra-type equation
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1869 - 1891
  • [6] Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod
    Atanackovica, T. M.
    Pilipovic, S.
    Zorica, D.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (02) : 175 - 190
  • [7] FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES
    BAGLEY, RL
    CALICO, RA
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) : 304 - 311
  • [8] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
  • [9] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38
  • [10] MATHEMATICAL MODELING OF THE DYNAMICS OF ANOMALOUS MIGRATION FIELDS WITHIN THE FRAMEWORK OF THE MODEL OF DISTRIBUTED ORDER
    Bulavatsky, V. M.
    Krivonos, Yu. G.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2013, 49 (03) : 390 - 396