Global well-posedness for 2D nonlinear wave equations without compact support

被引:20
作者
Cai, Yuan [1 ]
Lei, Zhen [1 ,2 ]
Masmoudi, Nader [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 114卷
关键词
Global well-posedness; Two dimensional nonlinear wave; equations; Without compact support; Null condition; NULL CONDITION; EXISTENCE; SYSTEMS; ELASTODYNAMICS; DIMENSIONS; AMPLITUDE; BLOWUP; 3D;
D O I
10.1016/j.matpur.2017.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the significant work of [6], Alinhac proved the global existence of small solutions for 2D quasilinear wave equations under the null conditions. The proof heavily relies on the fact that the initial data have compact support [23]. Whether this constraint can be removed or not is still unclear. In this paper, for fully nonlinear wave equations under the null conditions, we prove the global well-posedness for small initial data without compact support. Moreover, we apply our result to a class of quasilinear wave equations. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 50 条