Global well-posedness for 2D nonlinear wave equations without compact support

被引:20
|
作者
Cai, Yuan [1 ]
Lei, Zhen [1 ,2 ]
Masmoudi, Nader [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 114卷
关键词
Global well-posedness; Two dimensional nonlinear wave; equations; Without compact support; Null condition; NULL CONDITION; EXISTENCE; SYSTEMS; ELASTODYNAMICS; DIMENSIONS; AMPLITUDE; BLOWUP; 3D;
D O I
10.1016/j.matpur.2017.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the significant work of [6], Alinhac proved the global existence of small solutions for 2D quasilinear wave equations under the null conditions. The proof heavily relies on the fact that the initial data have compact support [23]. Whether this constraint can be removed or not is still unclear. In this paper, for fully nonlinear wave equations under the null conditions, we prove the global well-posedness for small initial data without compact support. Moreover, we apply our result to a class of quasilinear wave equations. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 50 条
  • [1] Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    NONLINEARITY, 2016, 29 (04) : 1257 - 1291
  • [3] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [4] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [5] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Jin, Xueting
    Xiao, Yuelong
    Yu, Huan
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1293 - 1309
  • [6] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Xueting Jin
    Yuelong Xiao
    Huan Yu
    Acta Mathematica Scientia, 2022, 42 : 1293 - 1309
  • [7] Global well-posedness of the energy-critical stochastic nonlinear wave equations
    Brun, Enguerrand
    Li, Guopeng
    Liu, Ruoyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 316 - 348
  • [8] GLOBAL WELL-POSEDNESS OF 2D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DATA AND VACUUM
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 701 - 708
  • [9] Global well-posedness of 2D nonlinear Boussinesq equations with mixed partial viscosity and thermal diffusivity
    Chen, Chao
    Liu, Jitao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4412 - 4424
  • [10] Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
    Zhou, Guoli
    Wang, Lidan
    Wu, Jiang-Lun
    STATISTICS & PROBABILITY LETTERS, 2022, 182