A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity

被引:54
|
作者
Iftimie, D [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
Navier-Stokes equations; Sobolev spaces;
D O I
10.1137/S0036141000382126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chemin et al. [M2AN Math. Model. Numer. Anal., 34 (2000), pp. 315-335.] considered the three-dimensional Navier-Stokes equations with vanishing vertical viscosity. Assuming that the initial velocity is square-integrable in the horizontal direction and Hs in the vertical direction, they prove existence of solutions for s > 1/2 and uniqueness of solutions for s > 3/2. Here, we close the gap between existence and uniqueness, proving uniqueness of solutions for s > 1/2. Standard techniques are used.
引用
收藏
页码:1483 / 1493
页数:11
相关论文
共 50 条