A degree bound for the parameterization of a rational surface

被引:7
作者
Schicho, J [1 ]
机构
[1] Johannes Kepler Univ, Symbol Computat Res Inst, A-4040 Linz, Austria
关键词
D O I
10.1016/S0022-4049(98)00078-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is an upper bound for the degree of the smallest parameterization of a rational surface of degree d. We also give another such upper bound in terms of the degree and the sectional genus of the surface. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 34 条
[1]   Automatic Parameterization of rational curves and surface III: algebraic plane curves [J].
Abhyankar, Shreeram S. ;
Bajaj, Chanderjit L. .
Computer Aided Geometric Design, 1988, 5 (04) :309-321
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]  
[Anonymous], 1993, COMPUTATIONAL APPROA
[4]  
BAJAJ C, 1994, P GRAPH INT 94 BANFF
[5]  
Barnhill R. E., 1985, Computer-Aided Geometric Design, V2, P1, DOI 10.1016/0167-8396(85)90002-0
[6]   ON THE ITERATION OF THE ADJUNCTION PROCESS FOR SURFACES OF NEGATIVE KODAIRA DIMENSION [J].
BIANCOFIORE, A ;
LIVORNI, EL .
MANUSCRIPTA MATHEMATICA, 1989, 64 (01) :35-54
[7]   ON THE ITERATION OF THE ADJUNCTION PROCESS IN THE STUDY OF RATIONAL SURFACES [J].
BIANCOFIORE, A ;
LIVORNI, EL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :167-188
[8]  
BOHM W, 1984, COMPUT AIDED GEOM D, V1, P1
[9]   EUCLIDS ALGORITHM AND THEORY OF SUBRESULTANTS [J].
BROWN, WS ;
TRAUB, JF .
JOURNAL OF THE ACM, 1971, 18 (04) :505-&
[10]  
Buchberger B., 1965, THESIS U INNSBRUCK