PFS: Particle-Filter-Based Superpixel Segmentation

被引:4
作者
Xu, Li [1 ,2 ]
Luo, Bing [3 ]
Pei, Zheng [3 ]
Qin, Keyun [2 ]
机构
[1] Xihua Univ, Postdoctoral Stn, Collaborat Innovat Ctr Sichuan Automot Key Parts, Chengdu 610039, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China
[3] Xihua Univ, Ctr Radio Adm Technol Dev, Chengdu 610039, Sichuan, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 05期
关键词
superpixel segmentation; particle filtering; density cluster; associate rule; intra-region similarity; IMAGE SEGMENTATION; RANKING;
D O I
10.3390/sym10050143
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a particle-filter-based superpixel (PFS) segmentation method that extends the original tracking problem as a region clustering problem. The basic idea is to approximate superpixel centers by multiple particles to obtain high intra-region similarity. Specifically, we firstly use a density cluster to initialize single-group particles and introduce the association rule for mining other initial candidate particles. In propagation, particles are transferred to neighboring local regions by a moving step aiming to update local candidate particles with a lower energy cost. We evaluate all particles on the basis of their cluster similarity and estimate the largest particles as the final superpixel centers. The proposed method can locate cluster centers in diverse feature space, which alleviates the risk of a local optimum and produces better segmentation performance. Experimental results on the Berkeley segmentation 500 dataset (BSD500) demonstrate that our method outperforms seven state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] [Anonymous], 2008, 2008 IEEE C COMP VIS
  • [3] [Anonymous], P IEEE C COMP VIS PA
  • [4] Contour Detection and Hierarchical Image Segmentation
    Arbelaez, Pablo
    Maire, Michael
    Fowlkes, Charless
    Malik, Jitendra
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) : 898 - 916
  • [5] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [6] Salient region detection through sparse reconstruction and graph-based ranking
    Fareed, Mian Muhammad Sadiq
    Ahmed, Gulnaz
    Chun, Qi
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 32 : 144 - 155
  • [7] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181
  • [8] Regularity Preserved Superpixels and Supervoxels
    Fu, Huazhu
    Cao, Xiaochun
    Tang, Dai
    Han, Yahong
    Xu, Dong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (04) : 1165 - 1175
  • [9] Fulkerson B., 2009, IEEE I CONF COMP VIS, P670, DOI 10.1109/ICCV.2009.5459175
  • [10] Saliency detection for panoramic landscape images of outdoor scenes
    Han, Byeong-Ju
    Sim, Jae-Young
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 : 27 - 37