Non-viral peptide-based approaches to gene delivery

被引:71
作者
Mahato, RI [1 ]
机构
[1] Univ Utah, Ctr Controlled Chem Delivery, Dept Pharmaceut & Pharmaceut Chem, Salt Lake City, UT 84112 USA
关键词
compacted DNA; polylysine; peptide; stability; intracellular trafficking; gene therapy;
D O I
10.3109/10611869909085509
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
To achieve effective non-viral gene therapy, the control of in vitro and in vivo stability, cellular access, intracellular trafficking and nuclear retention of plasmids must be achieved. Inefficient endosomal release, stability against cytosolic nucleases, cytoplasmic transport and nuclear entry of plasmids are amongst some of the key limiting factors in the use of plasmids for effective gene therapy. Synthetic peptide-based gene delivery systems can be designed for DNA compaction, serum stability, cell-specific targeting, endosomolysis, cytoplasmic stability and nuclear transport. The stability of compacted DNA under physiological conditions can be enhanced by the use of hydrophilic polymers, such as polyethylene glycol. The aims of this review are to Ci) explore theoretical and experimental aspects of DNA compaction, (ii) describe approaches for stabilizing compacted DNA, (iii) assess techniques used for characterization of compacted DNA, and (iv) review possible use of peptides for efficient gene transfer.
引用
收藏
页码:249 / 268
页数:20
相关论文
共 50 条
  • [31] Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery
    Buck, Jonas
    Grossen, Philip
    Cullis, Pieter R.
    Huwyler, Jorg
    Witzigmann, Dominik
    ACS NANO, 2019, 13 (04) : 3754 - 3782
  • [32] Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases
    Jiao, Liping
    Sun, Zhuokai
    Sun, Zhihong
    Liu, Jie
    Deng, Guanjun
    Wang, Xiaozhong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [33] Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide
    Favaro, T. P.
    de Toledo, M. A. S.
    Alves, R. F.
    Santos, C. A.
    Beloti, L. L.
    Janissen, R.
    de la Torre, G.
    Souza, A. P.
    Azzoni, A. R.
    JOURNAL OF BIOTECHNOLOGY, 2014, 173 : 10 - 18
  • [34] Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery
    Yin, Lichen
    Song, Ziyuan
    Kim, Kyung Hoon
    Zheng, Nan
    Tang, Haoyu
    Lu, Hua
    Gabrielson, Nathan
    Cheng, Jianjun
    BIOMATERIALS, 2013, 34 (09) : 2340 - 2349
  • [35] Non-viral Delivery Systems for Breast Cancer Gene Therapy
    Vaseghi, Golnaz
    Rafiee, Laleh
    Javanmard, Shaghayegh Haghjooy
    CURRENT GENE THERAPY, 2017, 17 (02) : 147 - 153
  • [36] How to screen non-viral gene delivery systems in vitro?
    van Gaal, Ethlinn V. B.
    van Eijk, Roel
    Oosting, Ronald S.
    Kok, Robbert Jan
    Hennink, Wim E.
    Crommelin, Daan J. A.
    Mastrobattista, Enrico
    JOURNAL OF CONTROLLED RELEASE, 2011, 154 (03) : 218 - 232
  • [37] DNA Nuclear Targeting Sequences for Non-Viral Gene Delivery
    van Gaal, Ethlinn V. B.
    Oosting, Ronald S.
    van Eijk, Roel
    Bakowska, Marta
    Feyen, Dries
    Kok, Robbert Jan
    Hennink, Wim E.
    Crommelin, Daan J. A.
    Mastrobattista, Enrico
    PHARMACEUTICAL RESEARCH, 2011, 28 (07) : 1707 - 1722
  • [38] Physical Non-Viral Gene Delivery Methods for Tissue Engineering
    Mellott, Adam J.
    Forrest, M. Laird
    Detamore, Michael S.
    ANNALS OF BIOMEDICAL ENGINEERING, 2013, 41 (03) : 446 - 468
  • [39] Non-viral gene delivery systems for tissue repair and regeneration
    Wu, Pan
    Chen, Haojiao
    Jin, Ronghua
    Weng, Tingting
    Ho, Jon Kee
    You, Chuangang
    Zhang, Liping
    Wang, Xingang
    Han, Chunmao
    JOURNAL OF TRANSLATIONAL MEDICINE, 2018, 16
  • [40] Overcoming barriers in non-viral gene delivery for neurological applications
    Tasset, Aaron
    Bellamkonda, Arjun
    Wang, Wenliang
    Pyatnitskiy, Ilya
    Ward, Deidra
    Peppas, Nicholas
    Wang, Huiliang
    NANOSCALE, 2022, 14 (10) : 3698 - 3719