A degree theory for second order nonlinear elliptic operators with nonlinear oblique boundary conditions

被引:2
|
作者
Li, Yanyan [1 ,2 ]
Liu, Jiakun [3 ]
Luc Nguyen [4 ,5 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Univ Wollongong, Inst Math & its Applicat, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[4] Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
[5] Univ Oxford, Edmund Hall, Oxford OX2 6GG, England
基金
澳大利亚研究理事会;
关键词
Degree theory; fully nonlinear elliptic operators; oblique boundary conditions; MONGE-AMPERE TYPE; YAMABE PROBLEM; EQUATIONS; MANIFOLDS; EXISTENCE;
D O I
10.1007/s11784-016-0382-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an integer-valued degree for second order fully nonlinear elliptic operators with nonlinear oblique boundary conditions. We also give some applications to the existence of solutions of certain nonlinear elliptic equations arising from a Yamabe problem with boundary and reflector problems.
引用
收藏
页码:853 / 876
页数:24
相关论文
共 50 条