Energy-preserving mixed finite element methods for the elastic wave equation

被引:3
|
作者
Li, Songxin [1 ]
Wu, Yongke [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Elastic wave; Energy-preserving; Mixed finite element methods; Error analysis; PRIORI ERROR ESTIMATION; ELASTODYNAMIC PROBLEM; POLYGONAL DOMAIN;
D O I
10.1016/j.amc.2022.126963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, energy-preserving mixed finite element methods corresponding to finite element exterior calculus are constructed for the first-order formulation of the elastic wave equation. The semi-discrete method conserves the system's energies exactly. A full-discrete method employing the Crank-Nicolson method, preserves energies exactly. In addition, optimal convergence orders are obtained based on a projection-based quasi-interpolation operator. Numerical experiments confirm the theoretical results.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条