GAPS BETWEEN ZEROS OF THE RIEMANN ZETA-FUNCTION

被引:11
作者
Bui, H. M. [1 ]
Milinovich, M. B. [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
CONSECUTIVE ZEROS; CRITICAL LINE;
D O I
10.1093/qmath/hax047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exist infinitely many consecutive zeros of the Riemann zeta-function on the critical line whose gaps are greater than 3.18 times the average spacing. Using a modification of our method, we also show that there are even larger gaps between the multiple zeros of the Riemann zeta-function on the critical line (if such zeros exist).
引用
收藏
页码:403 / 423
页数:21
相关论文
共 50 条
  • [31] On Lerch's formula and zeros of the quadrilateral zeta function
    Nakamura, Takashi
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2025,
  • [32] Zeros of combinations of the Riemann ξ-function on bounded vertical shifts
    Dixit, Atul
    Robles, Nicolas
    Roy, Arindam
    Zaharescu, Alexandru
    JOURNAL OF NUMBER THEORY, 2015, 149 : 404 - 434
  • [33] On Titchmarsh’s Phenomenon in the Theory of the Riemann Zeta Function
    S. V. Konyagin
    M. A. Korolev
    Proceedings of the Steklov Institute of Mathematics, 2022, 319 : 169 - 188
  • [34] Small values of the Riemann zeta function on the critical line
    Kalpokas, Justas
    Sarka, Paulius
    ACTA ARITHMETICA, 2015, 169 (03) : 201 - 220
  • [35] On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
    Konyagin, S. V.
    Korolev, M. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 319 (01) : 169 - 188
  • [36] GRAM'S LAW AND THE ARGUMENT OF THE RIEMANN ZETA FUNCTION
    Korolev, Maxim
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 92 (106): : 53 - 78
  • [37] On Repeated Values of the Riemann Zeta Function on the Critical Line
    Banks, William D.
    Kang, Sarah
    EXPERIMENTAL MATHEMATICS, 2012, 21 (02) : 132 - 140
  • [38] More than 41% of the zeros of the zeta function are on the critical line
    Bui, H. M.
    Conrey, Brian
    Young, Matthew P.
    ACTA ARITHMETICA, 2011, 150 (01) : 35 - 64
  • [39] Zeros of combinations of the Riemann Ξ-function and the confluent hypergeometric function on bounded vertical shifts
    Dixit, Atul
    Kumar, Rahul
    Maji, Bibekananda
    Zaharescu, Alexandru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 307 - 323
  • [40] Self-intersections of the Riemann zeta function on the critical line
    Banks, William
    Castillo-Garate, Victor
    Fontana, Luigi
    Morpurgo, Carlo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 475 - 481