Inverse scattering transform for the complex short-pulse equation by a Riemann-Hilbert approach

被引:19
作者
Prinari, Barbara [1 ]
Trubatch, A. David [2 ]
Feng, Bao-Feng [3 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[2] Montclair State Univ, Dept Appl Math & Stat, Montclair, NJ 07043 USA
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
CAMASSA-HOLM EQUATION; WAVE SOLUTIONS; WELL-POSEDNESS;
D O I
10.1140/epjp/s13360-020-00714-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we develop the inverse scattering transform (IST) for the complex short-pulse equation (CSP) on the line with zero boundary conditions at space infinity. The work extends to the complex case the Riemann-Hilbert approach to the IST for the real short-pulse equation proposed by A. Boutet de Monvel, D. Shepelsky and L. Zielinski in 2017. As a byproduct of the IST, soliton solutions are also obtained. Unlike the real SPE, in the complex case discrete eigenvalues are not necessarily restricted to the imaginary axis, and, as consequence, smooth 1-soliton solutions exist for any choice of discrete eigenvalue k1 is an element of C with Imk1<|Rek1|. The 2-soliton solution is obtained for arbitrary eigenvalues k1,k2, providing also the breather solution of the real SPE in the special case k2=-k1.
引用
收藏
页数:18
相关论文
共 43 条
[1]   SCATTERING AND INVERSE SCATTERING IN ONE-DIMENSIONAL NONHOMOGENEOUS MEDIA [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1717-1744
[2]  
BEALS R, 1989, STUD APPL MATH, V81, P125
[3]  
Boutet de Monvel A., 2008, Probability, Geometry and Integrable Systems, Vol 55 of Mathematical Sciences Research Institute Publications, P53
[4]   The bi-Hamiltonian structure of the short pulse equation [J].
Brunelli, J. C. .
PHYSICS LETTERS A, 2006, 353 (06) :475-478
[5]   Hamiltonian integrability of two-component short pulse equations [J].
Brunelli, J. C. ;
Sakovich, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
[6]   The short pulse hierarchy [J].
Brunelli, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
[7]   Well-posedness results for the short pulse equation [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1529-1557
[8]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[9]  
de Monvel AB, 2008, CONTEMP MATH, V458, P99
[10]   Riemann-Hilbert approach for the Camassa-Holm equation on the line [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) :627-632