Graph-based Semi-supervised Multi-label Learning Method

被引:0
|
作者
Chen-Guang, Zhang [1 ]
Xia-Huan, Zhang [1 ]
机构
[1] Hainan Univ, Coll Informat & Technol, Haikou, Peoples R China
来源
PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC) | 2013年
关键词
multi-label learning; graph based semi-superivsed learning; Hilbert-Schimidt independence criterion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of multi-label classification has attracted great interest in the last decade. However, most multi-label learning methods only focus on supervised settings, and can not effectively make use of relatively inexpensive and easily obtained large number of unlabeled samples. To solve this problem, we put forward a novel graph-based semi-supervised multi-label learning method, called GSMM. GSMM characterize the inherent correlations among multiple labels by Hilbert-Schmidt independence criterion. It's expected to derive the optimal assignment of class membership to unlabeled samples by maximizing the consistency of class label correlations and simultaneously as smooth as possible on sample feature graph. The experiments comparing GSMM to the state-of-the-art multi-label learning approaches on several real-world datasets show GSMM can effectively learn from the labeled and unlabeled samples. Especially when the labeled is relatively rare, it can improve the performance greatly.
引用
收藏
页码:1021 / 1025
页数:5
相关论文
共 50 条
  • [1] A Graph-based Semi-supervised Multi-label Learning Method Based on Label Correlation Consistency
    Qin Zhang
    Guoqiang Zhong
    Junyu Dong
    Cognitive Computation, 2021, 13 : 1564 - 1573
  • [2] A Graph-based Semi-supervised Multi-label Learning Method Based on Label Correlation Consistency
    Zhang, Qin
    Zhong, Guoqiang
    Dong, Junyu
    COGNITIVE COMPUTATION, 2021, 13 (06) : 1564 - 1573
  • [3] Semi-supervised Multi-label Learning for Graph-structured Data
    Song, Zixing
    Meng, Ziqiao
    Zhang, Yifei
    King, Irwin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1723 - 1733
  • [4] Label Correlation Propagation for Semi-supervised Multi-label Learning
    Ghosh, Aritra
    Sekhar, C. Chandra
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 52 - 60
  • [5] Normalized dependence maximization multi-label semi-supervised learning method
    College of Information Science and Technology, Hainan University, Haikou
    570228, China
    不详
    100097, China
    Zidonghua Xuebao Acta Auto. Sin., 9 (1577-1588): : 1577 - 1588
  • [6] LOCAL-DRIVEN SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Li, Teng
    Yan, Shuicheng
    Mei, Tao
    Kweon, In-So
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1508 - +
  • [7] Discrete Semi-supervised Multi-label Learning for Image Classification
    Xie, Liang
    He, Lang
    Shu, Haohao
    Hu, Shengyuan
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 808 - 818
  • [8] Semi-Supervised Dual Relation Learning for Multi-Label Classification
    Wang, Lichen
    Liu, Yunyu
    Di, Hang
    Qin, Can
    Sun, Gan
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9125 - 9135
  • [9] Semi-Supervised Multi-Label Dimensionality Reduction Learning by Instance and Label Correlations
    Li, Runxin
    Du, Jiaxing
    Ding, Jiaman
    Jia, Lianyin
    Chen, Yinong
    Shang, Zhenhong
    MATHEMATICS, 2023, 11 (03)
  • [10] Robust Multi-Label Semi-Supervised Classification
    Li, Sheng
    Fu, Yun
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 27 - 36