Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information

被引:68
作者
Sadeghi, Mojtaba [1 ]
Phu Nguyen [1 ]
Hsu, Kuolin [1 ]
Sorooshian, Soroosh [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Henry Samueli Sch Engn, Ctr Hydrometeorol & Remote Sensing CHRS, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA
基金
美国海洋和大气管理局;
关键词
Infrared information; Precipitation estimation; Deep learning; Convolutional neural networks; RAIN-GAUGE; GLOBAL PRECIPITATION; PASSIVE MICROWAVE; DATA SETS; SATELLITE; RADAR; CLOUD; PRODUCT; CLASSIFICATION; COMBINATION;
D O I
10.1016/j.envsoft.2020.104856
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products.
引用
收藏
页数:14
相关论文
共 91 条
  • [11] Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
    Beck, Hylke E.
    Pan, Ming
    Roy, Tirthankar
    Weedon, Graham P.
    Pappenberger, Florian
    van Dijk, Albert I. J. M.
    Huffman, George J.
    Adler, Robert F.
    Wood, Eric F.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (01) : 207 - 224
  • [12] PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis
    Behrangi, Ali
    Hsu, Kuo-Lin
    Imam, Bisher
    Sorooshian, Soroosh
    Huffman, George J.
    Kuligowski, Robert J.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2009, 10 (06) : 1414 - 1429
  • [13] Bellerby T, 2000, J APPL METEOROL, V39, P2115, DOI 10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO
  • [14] 2
  • [15] An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites
    Bessho, Kotaro
    Date, Kenji
    Hayashi, Masahiro
    Ikeda, Akio
    Imai, Takahito
    Inoue, Hidekazu
    Kumagai, Yukihiro
    Miyakawa, Takuya
    Murata, Hidehiko
    Ohno, Tomoo
    Okuyama, Arata
    Oyama, Ryo
    Sasaki, Yukio
    Shimazu, Yoshio
    Shimoji, Kazuki
    Sumida, Yasuhiko
    Suzuki, Masuo
    Taniguchi, Hidetaka
    Tsuchiyama, Hiroaki
    Uesawa, Daisaku
    Yokota, Hironobu
    Yoshida, Ryo
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) : 151 - 183
  • [16] Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States
    Chen, Sheng
    Hong, Yang
    Gourley, Jonathan J.
    Huffman, George J.
    Tian, Yudong
    Cao, Qing
    Yong, Bin
    Kirstetter, Pierre-Emmanuel
    Hu, Junjun
    Hardy, Jill
    Li, Zhe
    Khan, Sadiq I.
    Xue, Xianwu
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (12) : 8174 - 8186
  • [17] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [18] A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area
    Dieu Tien Bui
    Nhat-Duc Hoang
    Martinez-Alvarez, Francisco
    Phuong-Thao Thi Ngo
    Pham Viet Hoa
    Tien Dat Pham
    Samui, Pijush
    Costache, Romulus
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 701
  • [19] Erhan D, 2010, J MACH LEARN RES, V11, P625
  • [20] Recent advances in convolutional neural networks
    Gu, Jiuxiang
    Wang, Zhenhua
    Kuen, Jason
    Ma, Lianyang
    Shahroudy, Amir
    Shuai, Bing
    Liu, Ting
    Wang, Xingxing
    Wang, Gang
    Cai, Jianfei
    Chen, Tsuhan
    [J]. PATTERN RECOGNITION, 2018, 77 : 354 - 377