Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information

被引:65
|
作者
Sadeghi, Mojtaba [1 ]
Phu Nguyen [1 ]
Hsu, Kuolin [1 ]
Sorooshian, Soroosh [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Henry Samueli Sch Engn, Ctr Hydrometeorol & Remote Sensing CHRS, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA
基金
美国海洋和大气管理局;
关键词
Infrared information; Precipitation estimation; Deep learning; Convolutional neural networks; RAIN-GAUGE; GLOBAL PRECIPITATION; PASSIVE MICROWAVE; DATA SETS; SATELLITE; RADAR; CLOUD; PRODUCT; CLASSIFICATION; COMBINATION;
D O I
10.1016/j.envsoft.2020.104856
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improving Precipitation Estimation Using Convolutional Neural Network
    Pan, Baoxiang
    Hsu, Kuolin
    AghaKouchak, Amir
    Sorooshian, Soroosh
    WATER RESOURCES RESEARCH, 2019, 55 (03) : 2301 - 2321
  • [2] U-Net Convolutional Neural Network for Real-Time Prediction of the Number of Cultured Corneal Endothelial Cells for Cellular Therapy
    Okumura, Naoki
    Nishikawa, Takeru
    Imafuku, Chiaki
    Matsuoka, Yuki
    Miyawaki, Yuna
    Kadowaki, Shinichi
    Nakahara, Makiko
    Matsuoka, Yasushi
    Koizumi, Noriko
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [3] Age Estimation of Real-Time Faces Using Convolutional Neural Network
    Agbo-Ajala, Olatunbosun
    Viriri, Serestina
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 316 - 327
  • [4] SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture
    Fan, Xinyuan
    Zhang, Weige
    Zhang, Caiping
    Chen, Anci
    An, Fulai
    ENERGY, 2022, 256
  • [5] U-Net based convolutional neural network for skeleton extraction
    Panichev, Oleg
    Voloshyna, Alona
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1186 - 1189
  • [6] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [7] BREAST LESION SEGMENTATION AND CLASSIFICATION USING U-NET SALIENCY ESTIMATION AND EXPLAINABLE RESIDUAL CONVOLUTIONAL NEURAL NETWORK
    Fatima, Mamuna
    Khan, Muhammad attique
    Shaheen, Saima
    Albarakati, Hussain mobarak
    Wang, Shuihua
    Jilani, Syeda fizzah
    Shabaz, Mohammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [8] Lung-Nodule Segmentation Using a Convolutional Neural Network with the U-Net Architecture
    Hernandez-Solis, Vicente
    Tellez-Velazquez, Arturo
    Orantes-Molina, Antonio
    Cruz-Barbosa, Raul
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 335 - 344
  • [9] A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture
    Abid, Iqra
    Almakdi, Sultan
    Rahman, Hameedur
    Almulihi, Ahmed
    Alqahtani, Ali
    Rajab, Khairan
    Alqhatani, Abdulmajeed
    Shaikh, Asadullah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1407 - 1421
  • [10] Monitoring of Seagrass Meadows Using Satellite Images and U-Net Convolutional Neural Network
    Scarpetta, Marco
    Affuso, Paolo
    de Virgilio, Maddalena
    Spadavecchia, Maurizio
    Andria, Gregorio
    Giaquinto, Nicola
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,