Characterization of tail distributions based on record values by using the Beurling's Tauberian theorem

被引:6
作者
El Arrouchi, Mohamed [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, Fac Sci, Kenitra, Morocco
关键词
Beurling's tauberian theorem; Regular variation; Self-neglecting; Record values;
D O I
10.1007/s10687-016-0267-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly investigate the converse of a well-known theorem proved by Shorrock (J. Appl. Prob. 9, 316-326 1972b), which states that the regular variation of tail distribution implies a non-degenerate limit for the ratios of the record values. Specifically, the converse is proved by using Beurling extension of Wiener's Tauberian theorem. This equivalence is extended to the Weibull and Gumbel max-domains of attraction.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 19 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1971, INTRO PROBABILITY TH
[3]  
ARNOLD BC, 1998, RECORD
[4]   Beurling slow and regular variation [J].
Bingham, N. H. ;
Ostaszewski, A. J. .
TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 1 (01) :29-56
[5]  
Bingham N.H., 1979, P 6 C PROB THEOR BRA, P23
[6]  
Bingham NH., 1989, REGULAR VARIATION
[7]  
CHANDLER KN, 1952, J ROY STAT SOC B, V14, P220
[8]   EXTREMAL PROCESSES [J].
DWASS, M .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04) :1718-&
[9]  
Haan L.D., 1970, REGULAR VARIATION IT, V32
[10]  
Korevaar J., 2004, Tauberian theory: A century of developments