Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves

被引:90
作者
Laliena, Antonio R. [2 ]
Sayas, Francisco-Javier [1 ,3 ]
机构
[1] Univ Zaragoza, CPS, Dept Matemat Aplicada, Zaragoza 50018, Spain
[2] Univ Zaragoza, EUPLA, Dept Matemat, La Almunia 50100, Spain
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
BOUNDARY INTEGRAL-EQUATIONS; TIME DISCRETIZATION; PARABOLIC EQUATIONS; FINITE-ELEMENTS;
D O I
10.1007/s00211-009-0220-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address several theoretical questions related to the numerical approximation of the scattering of acoustic waves in two or three dimensions by penetrable non-homogeneous obstacles using convolution quadrature (CQ) techniques for the time variable and coupled boundary element method/finite element method for the space variable. The applicability of CQ to waves requires polynomial type bounds for operators related to the operator Delta - s (2) in the right half complex plane. We propose a new systematic way of dealing with this problem, both at the continuous and semidiscrete-in-space cases. We apply the technique to three different situations: scattering by a group of sound-soft and -hard obstacles, by homogeneous and non-homogeneous obstacles.
引用
收藏
页码:637 / 678
页数:42
相关论文
共 39 条
[1]  
[Anonymous], ENCY COMPUTATIONAL M
[2]  
[Anonymous], LECT NOTES APPL COMP
[3]  
Bachelot A, 2001, NUMER MATH, V89, P257, DOI 10.1007/PL00005468
[4]  
Bamberger A., 1986, Math. Methods Appl. Sci, V8, P405, DOI [10.1002/mma.1670080127, DOI 10.1002/MMA.1670080127]
[5]  
Bamberger A., 1986, Math. Methods Appl. Sci., V8, P598
[6]   A SPACE-TIME VARIATIONAL FORMULATION FOR THE BOUNDARY INTEGRAL-EQUATION IN A 2D ELASTIC CRACK PROBLEM [J].
BECACHE, E ;
DUONG, TH .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1994, 28 (02) :141-176
[7]   Runge-Kutta convolution quadrature methods for well-posed equations with memory [J].
Calvo, M. P. ;
Cuesta, E. ;
Palencia, C. .
NUMERISCHE MATHEMATIK, 2007, 107 (04) :589-614
[8]   Coupling of nonconforming finite elements and boundary elements I: A priori estimates [J].
Carstensen, C ;
Funken, SA .
COMPUTING, 1999, 62 (03) :229-241
[9]  
Chapko R., 1997, J. Integral Equations Appl., P47
[10]   A DIRECT BOUNDARY INTEGRAL-EQUATION METHOD FOR TRANSMISSION PROBLEMS [J].
COSTABEL, M ;
STEPHAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (02) :367-413