Fault-tolerant hamiltonicity of twisted cubes

被引:84
|
作者
Huang, WT [1 ]
Tan, JJM [1 ]
Hung, CN [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
hamiltonian; hamiltonian connected; fault-tolerant; twisted cube;
D O I
10.1006/jpdc.2001.1813
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The twisted cube TQ(n), is derived by changing some connection of hypercube Q(n) according to specific rules. Recently, many topological properties of this variation cube are studied. In this paper, we consider a faulty twisted n-cube with both edge and/or node faults. Let F be a subset of V(TQ(n)) boolean AND E(TQ(n)), we prove that TQ(n) - F remains hamiltonian if \F\ less than or equal to n - 2. Moreover, we prove that there exists a hamiltonian path in TQ, - F joining any two vertices u, v in V(TQ(n)) - F if \F\ less than or equal to n-3. The result is optimum in the sense that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity respectively) of TQn is at most n-2 (n-3 respectively). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [31] Fault-tolerant Routing Methods in Crossed Cubes
    Otake, Koji
    Mouri, Kousuke
    Kaneko, Keiichi
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION TECHNOLOGY (IAIT2018), 2018,
  • [32] Fault-tolerant routing for complete Josephus cubes
    Loh, PKK
    Hsu, WJ
    PARALLEL COMPUTING, 2004, 30 (9-10) : 1151 - 1167
  • [33] Fault-tolerant routing on Complete Josephus!Cubes
    Loh, PKK
    Schröder, H
    Hsu, WJ
    PROCEEDINGS OF THE 6TH AUSTRALASIAN COMPUTER SYSTEMS ARCHITECTURE CONFERENCE, ACSAC 2001, 2001, 23 (04): : 95 - 104
  • [34] Fault-tolerant embedding of paths in crossed cubes
    Ma, Meijie
    Liu, Guizhen
    Xu, Jun-Ming
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 110 - 116
  • [35] Fault-Tolerant Panconnectivity of Augmented Cubes AQn
    Xu, Xirong
    Zhang, Huifeng
    Zhang, Sijia
    Yang, Yuansheng
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (08) : 1247 - 1278
  • [36] Fault hamiltonicity of augmented cubes
    Hsu, HC
    Chiang, LC
    Tan, JJM
    Hsu, LH
    PARALLEL COMPUTING, 2005, 31 (01) : 131 - 145
  • [37] Fault-tolerant cycle-embedding of crossed cubes
    Yang, MC
    Li, TK
    Tan, JJM
    Hsu, LH
    INFORMATION PROCESSING LETTERS, 2003, 88 (04) : 149 - 154
  • [38] Stochastic Fault-Tolerant Routing in Dual-Cubes
    Park, Junsuk
    Seki, Nobuhiro
    Kaneko, Keiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (08): : 1920 - 1921
  • [39] Fault-tolerant Routing in a Locally Twisted Cube
    Takano, Yudai
    Hirai, Yuki
    Kaneko, Keiichi
    2016 FIFTH ICT INTERNATIONAL STUDENT PROJECT CONFERENCE (ICT-ISPC), 2016, : 5 - 8
  • [40] MODULAR FAULT-TOLERANT BOOLEAN N-CUBES
    YANG, CS
    WU, SY
    IEEE MICRO, 1994, 14 (04) : 68 - 77