Fault-tolerant hamiltonicity of twisted cubes

被引:84
|
作者
Huang, WT [1 ]
Tan, JJM [1 ]
Hung, CN [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
hamiltonian; hamiltonian connected; fault-tolerant; twisted cube;
D O I
10.1006/jpdc.2001.1813
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The twisted cube TQ(n), is derived by changing some connection of hypercube Q(n) according to specific rules. Recently, many topological properties of this variation cube are studied. In this paper, we consider a faulty twisted n-cube with both edge and/or node faults. Let F be a subset of V(TQ(n)) boolean AND E(TQ(n)), we prove that TQ(n) - F remains hamiltonian if \F\ less than or equal to n - 2. Moreover, we prove that there exists a hamiltonian path in TQ, - F joining any two vertices u, v in V(TQ(n)) - F if \F\ less than or equal to n-3. The result is optimum in the sense that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity respectively) of TQn is at most n-2 (n-3 respectively). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [1] Conditional fault-tolerant hamiltonicity of twisted cubes
    Fu, Jung-Sheng
    SEVENTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2006, : 5 - 10
  • [2] On the fault-tolerant Hamiltonicity of faulty crossed cubes
    Huang, WT
    Chuang, YC
    Tan, JJM
    Hsu, LH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (06) : 1359 - 1370
  • [3] Fault-Tolerant Hamiltonicity of Augmented Cubes under the Conditional Fault Model
    Hsieh, Sun-Yuan
    Cian, Yi-Ru
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2009, 5574 : 673 - 683
  • [4] Stochastic Fault-tolerant Routing in Locally Twisted Cubes
    Takano, Yudai
    Kaneko, Keiichi
    2017 6TH ICT INTERNATIONAL STUDENT PROJECT CONFERENCE (ICT-ISPC), 2017,
  • [5] Optimal fault-tolerant embedding of paths in twisted cubes
    Fan, Jianxi
    Lin, Xiaola
    Pan, Yi
    Jia, Xiaohua
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (02) : 205 - 214
  • [6] Fault-tolerant embedding of meshes/tori in twisted cubes
    Dong, Qiang
    Yang, Xiaofan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (08) : 1595 - 1602
  • [7] Fault-tolerant edge-pancyclicity of locally twisted cubes
    Xu, Xirong
    Zhai, Wenhua
    Xu, Jun-Ming
    Deng, Aihua
    Yang, Yuansheng
    INFORMATION SCIENCES, 2011, 181 (11) : 2268 - 2277
  • [8] Fault-Tolerant Edge-Pancyclicity of Locally Twisted Cubes LTQn
    Xu, Xirong
    Zhang, Huifeng
    Zhao Lingqi
    Zhe Zhang
    Yang, Yuansheng
    UTILITAS MATHEMATICA, 2020, 115 : 143 - 158
  • [9] Fault-tolerant embedding of complete binary trees in locally twisted cubes
    Liu, Zhao
    Fan, Jianxi
    Zhou, Jingya
    Cheng, Baolei
    Jia, Xiaohua
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 101 : 69 - 78
  • [10] Fault-tolerant vertex-pancyclicity of locally twisted cubes LTQn
    Xu, Xirong
    Huang, Yazhen
    Zhang, Peng
    Zhang, Sijia
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 88 : 57 - 62