Fault-tolerant hamiltonicity of twisted cubes

被引:85
作者
Huang, WT [1 ]
Tan, JJM [1 ]
Hung, CN [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
hamiltonian; hamiltonian connected; fault-tolerant; twisted cube;
D O I
10.1006/jpdc.2001.1813
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The twisted cube TQ(n), is derived by changing some connection of hypercube Q(n) according to specific rules. Recently, many topological properties of this variation cube are studied. In this paper, we consider a faulty twisted n-cube with both edge and/or node faults. Let F be a subset of V(TQ(n)) boolean AND E(TQ(n)), we prove that TQ(n) - F remains hamiltonian if \F\ less than or equal to n - 2. Moreover, we prove that there exists a hamiltonian path in TQ, - F joining any two vertices u, v in V(TQ(n)) - F if \F\ less than or equal to n-3. The result is optimum in the sense that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity respectively) of TQn is at most n-2 (n-3 respectively). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:591 / 604
页数:14
相关论文
共 17 条
[1]   THE TWISTED CUBE TOPOLOGY FOR MULTIPROCESSORS - A STUDY IN NETWORK ASYMMETRY [J].
ABRAHAM, S ;
PADMANABHAN, K .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 13 (01) :104-110
[2]  
ABUELRUB E, 1993, P INT C COMP APPL DE, P1
[3]  
ALELIUNAS R, 1982, IEEE T COMPUT, V31, P907, DOI 10.1109/TC.1982.1676109
[4]  
BHUYAN LN, 1984, IEEE T COMPUT, V33, P323, DOI 10.1109/TC.1984.1676437
[5]  
Bondy J.A., 1980, Graph Theory with Applications
[6]   Topological properties of twisted cube [J].
Chang, CP ;
Wang, JN ;
Hsu, LH .
INFORMATION SCIENCES, 1999, 113 (1-2) :147-167
[7]   Fault diameter of k-ary n-cube networks [J].
Day, K ;
AlAyyoub, AE .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (09) :903-907
[8]  
Hibers P.A.J., 1987, LECT NOTES COMPUTER, P152
[9]   Fault-free Hamiltonian cycles in faulty arrangement graphs [J].
Hsieh, SY ;
Chen, GH ;
Ho, CW .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (03) :223-237
[10]  
HUANG WT, 1999, P 2 INT C PAR SYS PC, P1