The limit solutions of the difference-difference KdV equation

被引:4
作者
Chen, Peng [1 ]
Wang, Guang-sheng [1 ]
Zhang, Da-jun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPLE-POLE SOLUTIONS; DE-VRIES EQUATION; BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; SOLITON-SOLUTIONS;
D O I
10.1016/j.chaos.2007.07.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes ail exact limit procedure by which a simple formula for the N-double-pole solution to the difference-difference KdV equation is derived from its 2N-soliton solution in Hirota's form. This limit procedure is general and call apply to other soliton equations with multi-soliton solutions in Hirota's form. (C) 2007 Elsevier Ltd. All rights reserved,
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [41] New doubly-periodic solutions for the new integrable non local modified KdV equation
    Shamseldeen, S.
    Latif, M. S. Abdel
    Hamed, A. A.
    Nour, H. M.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2017, 2 (04) : 245 - 247
  • [42] Multi-Soliton and Rational Solutions for the Extended Fifth-Order KdV Equation in Fluids
    Meng, Gao-Qing
    Gao, Yi-Tian
    Zuo, Da-Wei
    Shen, Yu-Jia
    Sun, Yu-Hao
    Yu, Xin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (07): : 559 - 566
  • [43] Constructing Quasi-Periodic Wave Solutions of Differential-Difference Equation by Hirota Bilinear Method
    Wang, Qi
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (12): : 1159 - 1165
  • [44] Obtaining new soliton solutions of the fractional generalized perturbed KdV equation
    Bayrakci, Ugur
    Demiray, Seyma Tuluce
    Yildirim, Huseyin
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [46] Periodic finite-genus solutions of the KdV equation are orbitally stable
    Nivala, Michael
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (13) : 1147 - 1158
  • [47] Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation
    Li, C. X.
    Nimmo, J. J. C.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120): : 2471 - 2493
  • [48] Solutions and Painleve Property for the KdV Equation with Self-Consistent Source
    Shen, Yali
    Yao, Ruoxia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [49] Soliton solutions to the time-dependent coupled KdV–Burgers’ equation
    Aisha Alqahtani
    Vikas Kumar
    Advances in Difference Equations, 2019
  • [50] Explicit solutions of the Schamel-KdV equation employing Darboux transformation
    Chatterjee, Prasanta
    Saha, Dipan
    Wazwaz, Abdul-Majid
    Raut, Santanu
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):