The limit solutions of the difference-difference KdV equation

被引:4
作者
Chen, Peng [1 ]
Wang, Guang-sheng [1 ]
Zhang, Da-jun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPLE-POLE SOLUTIONS; DE-VRIES EQUATION; BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; SOLITON-SOLUTIONS;
D O I
10.1016/j.chaos.2007.07.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes ail exact limit procedure by which a simple formula for the N-double-pole solution to the difference-difference KdV equation is derived from its 2N-soliton solution in Hirota's form. This limit procedure is general and call apply to other soliton equations with multi-soliton solutions in Hirota's form. (C) 2007 Elsevier Ltd. All rights reserved,
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [31] EXACT TRAVELING WAVE SOLUTIONS OF THE GENERALIZED HIROTA-SATSUMA COUPLED KdV EQUATION
    Li, Zhu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (22): : 4333 - 4355
  • [32] Quasi-periodic solutions for perturbed generalized KdV equation
    Mi, Lufang
    Zhang, Kangkang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 314 - 337
  • [33] A DECAY PROPERTY OF SOLUTIONS TO THE K-GENERALIZED KDV EQUATION
    Nahas, Joules
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (9-10) : 833 - 858
  • [34] Abundant soliton solutions of the modified KdV-KP equation
    Chan, Choon Kit
    Akram, Ghazala
    Riaz, Muhammad Bilal
    Sadaf, Maasoomah
    Zainab, Iqra
    Alzaidi, Ahmed S. M.
    Abbas, Muhammad
    RESULTS IN PHYSICS, 2024, 58
  • [35] New exact solutions and numerical approximations of the generalized KdV equation
    Karakoc, Seydi Battal Gazi
    Ali, Khalid Karam
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 670 - 691
  • [36] Stability of elliptic function solutions for the focusing modified KdV equation
    Ling, Liming
    Sun, Xuan
    ADVANCES IN MATHEMATICS, 2023, 435
  • [38] Darboux transformation and explicit solutions for the integrable sixth-order KdV equation for nonlinear waves
    Wen, Xiao-Yong
    Gao, Yi-Tian
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) : 55 - 60
  • [39] Auto-Backlund transformation and analytic solutions for general variable-coefficient KdV equation
    Hong, WY
    Jung, YD
    PHYSICS LETTERS A, 1999, 257 (3-4) : 149 - 152
  • [40] Quasi-Periodic, Periodic Waves, and Soliton Solutions for the Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (9-10): : 639 - 645